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 Field distribution in respect of LP11 mode in the dispersion controlled fibers in the appearance and in 
disappearance of Kerr category nonlinearity. The estimation involves totally the mathematical expression for 
the field of LP11 mode as prescribed in the Chebyshev method. Mathematical solution in connection with the 
relevant characteristics are described.  The method of iterative repetition is applied for the required 
estimation at the state of said class of nonlinearity. The connected assessment using the prescribed 
mathematical exercise needs a little computations. But, the derived results exhibit extremely close proximity 
to the actual values obtained by a methodology namely  finite element. As a result, our simple and precise 
formalism provides ample scope for analyzing various Kerr class nonlinear dual-mode optical fiber 
properties. 
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1. INTRODUCTION 

Minimum absorption loss measuring nearly 0.2 dB/km is achieved when 
silica made optical fiber is operated at 1.55 μm wavelength and the 
material dispersion of these fibers vanishes when the operating 
wavelength is 1.3 μm (Neumann, 1998;  Ghatak and Thyagarajan, 1999). 
The dispersion parameters related to material and waveguide are of 
opposite signs at wavelengths larger than the wavelength where there is 
no material dispersion  and can thus be designed to neutralize each other 
at a  larger wavelength. So the operating window of zero first order 
chromatic dispersion is displaced to 1.55 μm for silica glass fibers to 
achieve simultaneously the lowest dispersion and the lowest attenuation 
loss optical medium. These fibers are called dispersion-shifted fibers 
(DSF) (Neumann, 1998; Ghatak and Thyagarajan, 1999; Ainslie and Day, 
1986; Tewari et al., 1992).  An alternative modification of the dispersion 
properties of a singlemode fiber (SMF) involves the availability of a low 
loss wide spectral window between 1.3 μm and 1.6 μm in which oppositely 
signed material dispersion and waveguide dispersion components are 
mutually neutralized. Such fibers, which offers the spectral freedom for 
laser sources and facilitate suitable wavelength division multiplexing are 
termed by dispersion-fattened fibers (DFF). These fibers increase the 
information-carrying capacity in optical communication systems (Olsson 
et al., 1985). 

The silhouette of index of refraction (RI) of a nonlinear optical fiber (NOF) 
depends on the signal intensity.  Hence its propagation parameters differ 
from those in the linear zone (Tomlinson et al., 1984; Tai et al., 1986; 
Snyder et al., 1990; Goncharenko, 1990; Sammut and Pask, 1990;Agrawal 
and Boyd, 1992; Burdin et al., 2018; Nesrallah et al., 2018; Agrawal, 2013). 

Again, different types of nonlinearity, like third order, fifth order and so 
on, are originated based on the signal intensity and the type of doping 
element used in the NOF (Agrawal, 2013). Kerr nonlinearity refers to 
third-order optical nonlinearity. Simultaneous actions like optical pulse 
minimization due to nonlinearity and also its widening owing to 
dispersion in a nonlinear fiber create optical soliton propagation 
(Agrawal, 2013).  

Kerr nonlinearity's impact on opto-mechanical ring resonators has 
already been explored and documented (Yu et al., 2012). Influence of the 
Kerr nonlinearity on cutoff frequency of initial higher-order modes in DSF 
and DFF has been reported (Mondal and Sarkar, 1996). The literature also 
contains a method for getting a solution for a nonlinear waveguide by 
finite element method (Hayata et al., 1987). In this back ground, it is 
significant to note that the finite element technique employed in 
nonlinearity investigations necessitates lengthy computations. 
Furthermore, in the case of NOF, a formalism based on the Chebyshev 
method for evaluating the cut-off frequency of the LP11 mode has been 
reported (Royand and Sarkar, 2013). From the perspective of execution, 
the formalism is quite simple, yet the results are extremely accurate.  

Chebyshev formalism has already been used to do a basic but accurate 
analysis of the propagation properties of NOF (Sadhu et al., 2013). The use 
of the Chebyshev power series technique to estimate the properties of  
fibers accurately,  has been reported already (Chen, 1982; Shijun, 1987; 
Patra, et al., 2008; Patra et al., 2008; Gangopadhyay and Sarkar, 1998;Bose 
et al., 2012).The Chebyshev formalism has been used to accurately 
estimate the LP01  field for third order nonlinear power law fibers (GIF) 
(Chakraborty et al., 2017).The literature also includes predictions of the 
LP11 modal field for GIF using the same formalism in the appearance and 
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omission of Kerr nonlinearity ( Chakraborty et al., 2017).The accuracy of 
Chebyshev formalism to the analysis of mono-mode Kerr category 
nonlinear DSF and DFF has been added recently to the literature ( Ray et 
al., 2020).   

We used the Chebyshev formalism to estimate LP11 modal fields in some 
typical DSF and DFF both when  Kerr class nonlinearity is present as well 
as absent.  Our approach needs little work to implement, but our results 
are extremely close to the exact ones in both cases. Moreover, no such 
correct approach involving simplicity for predicting the modal field of such 
specific types of Kerr class nonlinear DSF and DFF has been described till 
date. The current study is unquestionably innovative and system 
engineers will find it to be user-friendly. 

2. THEORY 

The RI distribution n (R) of an optical fiber is mathematically written as 

“ 𝑛2(𝑅) = 𝑛1
2(1 − 2𝛿𝑓(𝑅)),          0 < 𝑅 ≤ 1 

               = 𝑛2   
2                                    𝑅 > 1" 

(1) 

Here, 𝛿 = (𝑛1
2 − 𝑛2

2) 2𝑛1  
2⁄ ,  R = r/a, where, a is the core- radius  

The grading parameter is δ ,𝑛1is the refractive index (RI) of the core-axis 
and 𝑛2 is the RI of the clad. f( R ) defines the RI distribution in the fiber . 
f(R) is written as follows for different dispersion controlled fibers 

(I) For Trapezoidal fiber [28]  

“𝑓(𝑅) = 0,                            0 < 𝑅 ≤ 𝑆 

𝑓(𝑅) =
𝑅−𝑆

1−𝑆
 ,                       𝑆 < 𝑅 ≤ 1 " 

(2) 

     
(II) For Power law W fiber [29] 

“𝑓(𝑅) = 𝜌𝑅𝑞 ,                       𝑅 ≤ 1 𝐶⁄  

𝑓(𝑅) = 𝜌,                           1 𝐶⁄ < 𝑅 ≤ 1"  

(3) 

   
(III) For Step W fiber [30] 

“𝑓(𝑅) = 0,                            𝑅 ≤ 1 𝐶⁄  

𝑓(𝑅) = 𝜌,                           1 𝐶⁄ < 𝑅 ≤ 1"  
(4) 

Here, S is the aspect ratio of the trapezoidal fibre and 1/C is the normalized 
radial distance.  Again, q denotes the profile exponent.  Also, ρ is the 
relative RI-depth of the inner clad with RI 𝑛𝑖 and it is defined by 

“𝜌 =
𝑛1

2−𝑛𝑖
2

𝑛1
2−𝑛2

2" 

The silhouette of index of refraction n(R) of Kerr category NOF is 

“ n2(R) = nL
2(R) +

n2
2nNL(R)

η0
ψ2(R) " (5) 

Here, nL(R)depicts the RI profile when there is no nonlinearity and nNL(R) 
represents the range of non-linear Kerr parameter. The following scalar 
equation expresses the LP11 modal field ψ(R) for a Kerr class nonlinear 
fibre ( Mondal and Sarkar, 1996) 

“
d2ψ(R)

dR2
+

1

R

dψ(R)

dR
+ [V2{1 − f(R)} − W2]ψ(R) −

ψ(R)

𝑅2
+

V2gψ3(R) = 0 " 
(6) 

Where, mathematical expression of g is  

 “ g =
n2nNLP

πa2(n1
2−n2

2)
" 

In Eq.(6), W and V are the clad decay parameter and V-number 
respectively.  

For continuity of the wave function at the core-clad interface following 
condition has to be satisfied 

“ [
1

R

dψ

dR
]

R=1
= − [1 +

WK0(W)

K1(W)
] " (7) 

Where, the terms K0(W),K1(W) denote the  modified Bessel functions of W  
[31-33]. 

Again, the field in the clad can be written by  “ ψ(R)~K1(WR) "   when      

R > 1 

Following Chebyshev methodology approximated  field ψ(R) in respect of 
LP11mode in dispersion controlled fibers is (Chen, 1982; Shijun, 1987; 
Patra et al., 2008; Chakraborty et al., 2017). 

“ ψ(R) = a1R + a3R3 + a5R5             R ≤ 1 

           = (a1 + a3 + a5)
K1(WR)

K1(W)
 "        R > 1 

(8) 

a1, a3 and a5 being numerically constants. 

The following are the Chebyshev values [20] 

“Rm = cos (
2m−1

2M−1

π

2
) "   " m = 1, 2, … , (M − 1)" (9) 

Using Eqs. (8)  and (9) and taking M =3 one can obtain concerned 
Chebyshev values as below 

R1= 0.9511,   R2 = 0.5878 (10) 

We get the following two equations by using these two important 
Chebyshev values and Eqs. (8) and (6). 

“ a1[V2((1 − f(R1)) − W2 + V2gψ2(R1)] + a3[8 +

R1
2{V2((1 − f(R1)) − W2 + V2gψ2(R1)}] + a5[24R1

2 +

R1
4{V2((1 − f(R1)) − W2 + V2gψ2(R1)}] = 0 "   

(11) 

And 

“ a1[V2((1 − f(R2)) − W2 + V2gψ2(R2)] + a3[8 +

R2
2{V2((1 − f(R2)) − W2 + V2gψ2(R2)}] + a5  0 "   (12) 

The plotting of  K1(W) K0(W)⁄   vs 1 W⁄  is adequately linear for W between 
0.6 and 2.5 [33]. This allows us to create the following relationship in the 
stated band using the linear least square fitting approach [26]. 

“
K1(W)

K0(W)
= α +

β

W
“     with   α is equal to1.034623 and  

β is equal to 0.3890323                                 
(13) 

Combining Eqs. (8), (13) and (7) 

“a1[2(αW + β) + W2] + a3 [4 (αW + β) + W2] + a5 [6(αW +
β) + W2] = 0 " 

(14) 

For nontrivial solution for the constantsa1, a3and a5from Eqs.(11),(12) 
and (14) ,the mandatory condition is 

|
𝐴1 𝐵1 𝐶1

𝐴2 𝐵2 𝐶2

𝐴3 𝐵3 𝐶3

|= 0 (15) 

where, 

“ A1 = V2{1 − f(R1)} − W2 + V2gψ2(R1) ";  

“ 𝐵1 = 8 + R1
2[V2{1 − f(R1)} − W2 + V2gψ2(R1)] "; 

 “ 𝐶1 = 24R1
2 + R1

4[V2{1 − f(R1)} − W2 + V2gψ2(R1)] ";  

“ A2 = V2{1 − f(R2)} − W2 + V2gψ2(R2) ";  

 “ 𝐵2 = 8 + R2
2[V2{1 − f(R2)} − W2 + V2gψ2(R2)] "; 

 “ 𝐶2 = 24R2
2 + R2

4[V2{1 − f(R2)} − W2 + V2gψ2(R2)] "; 

“  A3 = 2(αW + β) + W2 ";  

“ B3 = 4(αW + β) + W2  "; 

“ C3 = 6(αW + β) + W2 "   (16) 

Putting g = 0 in Eq. (15) we can obtain W value for a selected V value when 
there is no nonlinearity. Next, using that W in any two of three Eqs. (11), 
(12), and (14),the constant values of a3and a5in terms of a1are found out 
for linear case. We now put the W-value  for linear case in Eq. (15) to know 
the value of W for the chosen fibre for an opted g value and continue the 
iteration technique for knowing the conjoining value of W . This conjoining 
W-value is employed in any two of the Eqs. (11), (12), and (14) to know 
conjoining values of a3 and a5 for that specific Kerr-class nonlinear fibre 
for that unique g value. Hence, in appearance of a specific type of Kerr 
nonlinearity, the field of the LP11 mode for every fibre of this category of 
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the given V -number is approximated from Eq.(8). The same method is 
followed for all opted fibers for prediction of the field of LP11 mode 

3. RESULTS AND DISCUSSIONS 

For determining the field distribution, we use three trapezoidal profiles 
fibers with the aspect ratios (S) 0.25, 0.50 and 0.75 all with the same V-
value 4.0, in our study. We use Eq. (15) to obtain W- values for the selected 
fibers in the disappearance of nonlinearity. We put the respective W-
values for those fibers to determine suitable W- values for two nonlinear 
situations as in Ref. (Mondal and Sarkar, 1996). Furthermore, using the 
methods described in section 2, determine the pertinent values of W in 
both the disappearance and appearance of nonlinearity and utilise to 
estimate the fields of the LP11 mode. For those fibers with S=0.25, 0.50 and 
0.75, the change of LP11 mode field ψ(R) with normalized radius path (R) 
is shown in Figs. 1, 2, and 3. We take  two parabolic kind W fibers with the 
same V- value 6.0 and C- value (1.5) but  with dissimilar ( 1.4975 ,1.5000) 
ρ -values (Ray et al., 2020; Mishra et al., 1984).  Next, by the same 
procedure stated above, the field of LP11mode for these two categories of 
graded W fibers are assessed. In the disappearance and appearance of 
nonlinearity, Figs. 4 and 5 delineate the changes of the LP11 field with R in 

respect of the above mentioned graded W fiber-samples. Likewise, we 
continue our analysis on two standard fibers having step W profile with 
the same V- number 4.0 and C -value 2.0 but dissimilar ρ-values as 1.3333 
and 1.2500 (Ray et al., 2020; Monerie, 1982). Proceeding as before, we 
predict the LP11 fields of these standard fibers having step- W profile 
corresponding to the chosen types of nonlinearity and also in linear state. 
Variation of  ψ(R) against  R for these step-W fibers are presented in Figs.6 
and 7. Solid lines  like  in each of above stated graphs represent 
the exact values of the field ψ(R) computed using the finite element 
approach (Hayata et al., 1987). It can be seen that our findings clearly 
equal with the exact ones in every instance. In addition, the condition 
nNLP = 0correlates to linearity, and the findings are also quite close with 
the available exact data (Hayata et al., 1987).By using this iterative 
Chebyshev approach to obtain the solution of a (3x3) determinant, any 
interested person can correctly determine the fields of the LP11 mode in 
dual- mode dispersion -controlled Kerr category nonlinear fibres. Thus, 
the findings are significant in terms of prudent selection of dual-mode 
fibers in the field of communication and sensors to reduce modal noise. 
Moreover, it offers wide scope for implementation in various sectors of 
nonlinear photonic-technology. 

 

Figure 1: Ѱ ( R ) versus R for 𝐿𝑃11mode  of Trapezoidal -Index fiber with  “ V = 4.0 and S=0.25 at differentnNLP"  “ ( Predicted results:  for nNLP = +1.5X10-

14m2 ,  for nNLP = 0 and  for nNLP = -1.5X10-14m2;  exact results)  ” 

 

Figure 2: Ѱ ( R ) versus R for 𝐿𝑃11 mode of Trapezoidal- Index fiber with “V = 4.0 and S=0.50 at different nNLP"  “ (Predicted results:  for nNLP = +1.5X10-

14m2 ,  for nNLP = 0 and  for nNLP = -1.5X10-14m2; exact results) ” 

 

Figure 3: Ѱ ( R ) versus R  for 𝐿𝑃11mode of Trapezoidal- Index fiber with “V = 4.0 and S=0.75 at  different  nNLP "  “ (Predicted results:  for nNLP = +1.5X10-

14m2 ,  for nNLP = 0 and  for nNLP = -1.5X10-14m2; exact results)” 
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Figure 4: Ѱ ( R ) versus R for 𝐿𝑃11 mode of Parabolic-W fiber with “ V = 6.0,1/C= 0.6666 and ρ =1.4975 at different  nNLP" “ (Predicted results:  for nNLP = 
+1.5X10-14m2 ,  for nNLP = 0 and  for nNLP = -1.5X10-14m2; exact results)” 

 

Figure 5: Ѱ ( R ) versus R for 𝐿𝑃11mode  of Parabolic-W  fiber with “ V = 6.0 ,1/C= 0.6666 and ρ =1.5000 with different  nNLP " “ (Predicted results:  for 
nNLP = +1.5X10-14m2 ,  for nNLP = 0 and  for nNLP = -1.5X10-14m2; exact results) ” 

 

Figure 6: Ѱ ( R ) versus R for 𝐿𝑃11 mode of Step-W fiber with “ V = 4.0 ,1/C= 0.5 and ρ =5/4 at different  nNLP " “ (Predicted results:  for nNLP = +1.5X10-

14m2 ,  for nNLP = 0 and  for nNLP = -1.5X10-14m2; exact results) ” 

 

Figure 7: Ѱ ( R )  R for 𝐿𝑃11 mode  of  Step-W fiber with “ V = 4.0 ,1/C= 0.5 and ρ=4/3 at different nNLP " “(Predicted results:  for nNLP = +1.5X10-14m2 ,  
for nNLP = 0 and  for nNLP = -1.5X10-14  m2; exact results)” 
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4. CONCLUSION 

In this research work, we use an unique formalism incorporating the 
process of iteration to forecast modal- field patterns of the first higher 
mode (LP11) of dispersion- controlled fibers in the appearance of third 
order nonlinearity. The formalism is straightforward to implement, but 
the results achieved are closely consistent with the available simulated 
correct results. In case of Trapezoidal -index fiber the normalized modal 
field Ѱ (R) is maximum for positive nonlinearity and it is minimum for 
negative nonlinearity keeping the normalized modal field value Ѱ (R) in 
between for linear condition for a particular normalised radial distance R 
exceeding 0.5. The same positions of field patterns are obtained for Step 
W dispersion-flattened fibers. But for Graded W fibers the opposite is 
found where the normalized modal field Ѱ (R) is minimum for positive 
nonlinearity and it is maximum for negative nonlinearity keeping the 
normalized modal field value Ѱ (R)  in between for linear condition for a 
particular normalised radial distance R exceeding 0.75 . In the realm of 
nonlinear photonics, the results will be tremendously valuable in terms of 
minimizing modal noise caused by such nonlinearity. 
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