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 The present study is related to the numerical solution of the human immunodeficiency virus (HIV) infection 
model with full logistic proliferation and variable source term (depending on the viral load) used for the 
supply of new CD4+ T-cells from thymus instead of using simple logistic proliferation and constant source 
term. In simple logistic proliferation term only the healthy or infected CD4+ T-cells proliferation are 
considered while in full logistic proliferation term both the proliferation of healthy and infected are 
considered. Consequently, the variable source term is used for the supply of new healthy CD4+ T-cells from 
thymus, which is a decreasing function depending on the concentration of viral load. Continuous Galerkin-
Petrov method, in particular cGP(2)-method has been invoked for finding the approximate solution of the 
model. For cGP(2)-method, we have two unknowns on each time interval which have to be calculated by 
solving 2 × 2 block system. This method is an accurate of order three in the whole time interval and shows 
the convergence of order four in the discrete time points. We examined the impact of various clinical 
parameters and study the existence of the infected state. Additionally, the Runge Kutta method of order four 
briefly RK4-method has also been used to verify and strengthen the results obtained by cGP(2)-method. 
Obtained results are displayed both graphically and in tabular form. The results obtained in this study 
confirm the idea that the cGP(2)-method is a powerful technique which can be applied to a large class of linear 
and nonlinear problems arising in different fields of science and engineering.  
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1. INTRODUCTION 

Infectious disease is disorders caused by micro organisms like viruses, 

bacteria etc. These infectious diseases transfer from human to human, or 

from other non-living things. It is caused by insects bites, contact with 

animal or usually acquired by eating or drinking foods contaminated with 

bacteria. Acquired Immune Deficiency Syndrome (AIDS) is such an 

infectious disease which is caused by HIV virus. HIV is a viral infection that 

can be transferred through blood or during pregnancy from mother to 

child, by sharing needles or from blood transfusions (Bell et al., 2011). 

AIDS is the most advanced stage of HIV infection. HIV is a small organism 

which basically targets the CD4+ T-cells which are the most important 

parts of the immune system. HIV basically creates a needless disturbance 

on the work of CD4+ T-cells and causes the destruction of CD4+ T-cells and 

decreases the body’s ability to fight against infection. HIV virus can not 

replicate by itself. It basically depends on a host cell to help in replication. 

HIV carries copies of its DNA and enters these copies into the host cell’s 

Deoxyribonucleic Acid (DNA).  

When the host cell is activated to replicate, then it starts to make copies of 

the virus. CD4+ T-cells act as the host cell. These cells play an important 

role in the immune response. Main function of CD4+ T-cells is to boost the 

command forces, which can obtain by CD8+ T-cells. CD8+ T-cells activate 

the immune response against viruses. These cells control the virus by 

bounding the HIV replication and intrude it into target cells. To 

understand the development of AIDS from HIV infection, it is important to 

analyze the dynamics of HIV, CD4+ T-cells, and CD8+ T-cells throughout 

the period of infection (Mccune, 2001). CD4+ T-cells are naturally refilled 

in the human body, but the infection decreases the number of CD4+ T-cells 

in the human body. Normally, HIV kills a small fraction of these cells 

approximately 10−4 to 10−5 at one time, but the reason in the reduction of 

CD4+ T-cells count is reasonably unknown during the last stages of AIDS 

(Anderson et al., 1998). The count of CD4+ T-cells is a primary signal 

having HIV which is used to measure proliferation rate of HIV infection 

(Mohri et al., 1998). Since this study is related to CD4+ T-cells so, we will 

use the term T-cells for to mean CD4+ T-cells throughout the reminder of 

this article. 

To understand and analysed the dynamics T-cells, HIV virus, and 

interaction of HIV with human immune system, several mathematical 



Matrix Science Mathematic (MSMK) 4(2) (2020) 37-43 

 

 
Cite the Article: Attaullah, Rashid Jan, A. Jabeen (2020). Solution of The Hiv Infection Model With Full Logistic Proliferation and Variable Source  

Term Using Galerkin Scheme.  Matrix Science Mathematic, 4(2): 37-43. 
 

 

models have been developed. Some of these mathematical models are 

widely used to study the mechanism of HIV virus that help to improve the 

understanding of the disease growth, its function in the host cells, test 

treatment strategies and the secondary infections such as tuberculosis 

(Kirschner et al., 1997; Hu et al., 2010). Based on these models, many 

researchers have studied in optimal drug dose control problems (Kutch 

and Gurfil, 2002; Anthea et al., 1993). Several studies have found evidence 

for high level of T-cells which controls HIV reproduction, and found that 

T-cells may control the presence of virus in the blood (Bonhoeffer et al., 

1997). A group researchers analyzed the dynamics of a delayed HIV 

pathogenesis model (Hu et al., 2010). A study the HIV-I dynamics in vivo 

and analyzed the virion clearance rate, infected T-cell lifespan, viral 

generation time and developed a simple model for the interaction between 

the human immune system and HIV (Perelson and Nelson, 1999). Some 

researchers explored the HIV-I dynamics at different time scales under 

anti-retroviral therapy (Garcia et al., 2006).  

This may lead to the effects of various parameters upon the viral load in 

different compartments at different stages after Highly Active Anti-

Retroviral Therapy (HAART) in order to identify the most sensitive 

parameters. Attaullah and Sohaib implemented two numerical schemes 

namely continuous Galerkin–Petrov (cGP(2)) and Legendre Wavelet 

Collocation Method (LWCM) for the approximate solution of the 

mathematical model which describes the behavior of T-cells, infected T-

cells and free HIV virus particles after HIV infection (Attaullah and Sohaib, 

2020). They presented and analyzed the effect of constant and different 

variable source terms (depending on the viral load) used for the supply of 

new T-cells from thymus on the dynamics of T-cells, infected T-cells and 

free HIV virus. Furthermore, they also solved the model using fourth order 

Runge Kutta (RK4) method. They highlights the accuracy and efficiency of 

the proposed schemes with the other traditional schemes. A study the 

dynamics of giving up smoking model of fractional order and presented 

the approximate solution of the concerned model utilizing Laplace 

transformation (Haq et al., 2018).  

They compared their results with the results obtained by Runge-Kutta 

method. A group researcher described the fractional order epidemic 

model of a vector-born disease with direct transmission in a population 

which is assumed to have a constant size over the period of the epidemic 

is consider (Haq et al., 2017). They solved the model numerically using 

Laplace Adomian decomposition method and compared the obtained 

results with the results of Runge-kutta method. A group researchers 

considered fractional order endemic model of non-fatal disease in a 

community (Shah and Bushnaq, 2017). They implemented Laplace 

transform coupled with Adomian decomposition method and obtained 

numerical solution of the proposed model. The solutions obtained by this 

method are compared with the solutions obtained by the RK4 and 

homotopy perturbation method for taking classical order derivative of the 

governing equations. Some researchers established the existence theory 

of solutions to HIV-1 infection model of T-cells with fractional order 

derivative (Bushnaq et al., 2017). The corresponding fractional order 

derivative is considered in Caputo-Fabrizio sense, which possesses more 

important characteristics in mathematical modeling. They provided the 

numerical solution and showed the effectiveness of the theoretical results. 

The study of some reesearchers concerned to the existence and stability of 

HIV/AIDS infection model with fractional order derivative (Bushnaq et al., 

2018).  

The corresponding derivative is taken in Caputo-Fabrizio sense, which is 

a new approach for such type of biological models. With the help of 

Sumudu transform, some new results are handled. Further for the 

corresponding results, existence theory and uniqueness for the 

equilibrium solution are provided via using nonlinear functional analysis 

and fixed point theory due to Banach. In other study, authors worked on 

HIV drug therapy and virus load (Bonhoeffer et al., 1997). A group 

resaerhcers investigated an approximate solution of a model for HIV 

infection of T-cells using homotopy analysis method (Ghoreishi et al., 

2011). Mostly researchers have worked in respect to the pathogenesis of 

HIV in host using simple logistic proliferation term. A group researcher 

and other researchers have assumed the HIV model with the growth of T-

cells by using a simple logistic proliferation term (Roy and Chatter, 2010; 

Kirschner, 1996; Leenheer and Smith, 2003; Wang and Ellermeyer, 2006). 

In literature, researchers suggest that all T-cells (healthy and infected) 

divide and increase in population and proliferate when these are activated 

once by antigen (Ghoreishi et al., 2011; Kirschner et al., 1993; Culshaw and 

Ruan, 2000; Wang and Li, 2006; Wang and Song, 2007; Otunuga, 2018; 

Gonzalez et al., 2020; Zhang and Liu, 2020; Qesmi and Hammoumi, 2020). 

Inspired by their work, we assumed that T-cells (healthy and infected) are 

governed by a full logistic growth term. Many researchers have considered 

that the human body produces T-cells in bone marrow and thymus at a 

constant rate during HIV infection (Roy and Chatterjee, 2010; Ghoreishi et 

al., 2011; Kirschner et al., 1993; Culshaw and Ruan, 2000; Wang and Li, 

2006; Wang and Song, 2007). Since, HIV virus has the ability to infects the 

thymus, due to this, constant source rate of healthy T-cells becomes 

decreasing source rate depending on viral load [23, 24], therefore we 

assumed variable source rate. We have utilized cGP(2)-method for HIV the 

model and find out the approximate solution (Schieweck, 2010; Matthies 

and Schieweck, 2011; Hussain et al., 2011; Hussain et al., 2012). This 

method has an advantages over other traditional methods, e.g., laplace 

adomian decomposition method, bessel collection method, homotopy 

analysis method, etc. To validate the solution, we also solved the model by 

using RK4-method and compared the results of both methods. All the 

numerical simulations for various sets of parameters are performed using 

a computer code written in MATLAB TM. Obtained results are displayed 

both graphically and in tabular form to illustrate the accuracy and 

effectiveness of the proposed method as compare to the other classical 

numerical schemes.  

2. MATHEMATICAL FORMULATION 

This section deals with the model proposed (Roy and Chatterjee, 2010). 

The model of HIV consisting of three coupled non linear ordinary 

differential equations that considered three populations, i.e., healthy T-

cells, infected T-cells and free virus. Let T(t), I(t) and V(t) be the 

concentration of healthy T-cells, infected T-cells and free viruses 

respectively at time t. The HIV model is as follows (Roy and Chatterjee, 

2010):  

𝑑𝑇

𝑑𝑡
= 𝑠 + 𝜌𝑇(1 −

𝑇

𝑇max
) − 𝜇𝑇𝑇 − 𝜅𝑇𝐼, (1) 

𝑑𝐼

𝑑𝑡
= 𝜅𝑇𝐼 − 𝜇𝐼𝐼 − 𝛽𝐼𝑉, (2) 

𝑑𝑉

𝑑𝑡
= 𝜂𝐼 − 𝜇𝑉𝑉. (3) 

Initial conditions are 𝑇(0) = 𝑇0, 𝐼(0) = 𝐼0 and 𝑉(0) = 𝑉0. The parameter 

‘𝑠’ represents the constant source term for the supply of new T-cells. It 

represents the rate at which healthy T-cells are produced from the 

precursor such as bone marrow and thymus (Wang and Song, 2007). The 

term 𝜌𝑇(1 −
𝑇

𝑇max
) in Equation (1) shows the growth rate of the healthy T-

cells where the parameter ‘𝜌’ denotes the average specific healthy T-cells 

growth rate obtained in the absence of population of healthy T-cells. The 

parameter ‘𝑇max’, represents the maximum level of T-cells in the body, i.e., 

when the population reaches ‘𝑇max’, it starts to reduce naturally, so that, T-

cells never grow larger than ‘𝑇max’ (Hu et al., 2010). The probability that 

an infected or healthy T-cell will die with respect to time is not known. 

Therefore, we assume that the natural death rate per T-cell is ‘𝜇𝑇’ for 

healthy T-cells and ‘𝜇𝐼’ for infected T-cells (Perelson and Nelson, 1999).  

The parameter ‘𝜅’ represents the constant rate between virus and healthy 

T-cells. The term ‘𝜅𝑇𝐼’ of Equation (1) expresses the rate at which free 

virus V infects T-cell. When T-cell is infected with virus, then it becomes 

latently infected. Therefore, we assume that when infection occurs by 

virus and infects the healthy T-cell, then it causes the loss of healthy T-cells 

at the rate −𝜅𝑇𝐼 and the production of infected T-cells at the rate 𝜅𝑇𝐼 

(Perelson and Nelson, 1999). Thus, infection occurs by virus interacting 

with healthy T-cells causing the loss of healthy T-cells at rate −𝜅𝑇𝐼 in 

Equation (1) and causing the generation of infected T-cells at rate 𝜅𝑇𝐼 in 

Equation (2). Then, infected cells are vanished either by having finite 
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duration of life or by being stimulated to reproduce (Kirschner, 1996). The 

parameter ‘𝛽’ denotes the killing rate of infected cells and ‘𝜇𝑉’ represents 

the clearance rate of free viruses. In Equation (3), the parameter ‘𝜂’ 

denotes the rate of reproduction of CD8 molecule, and ‘𝜇𝑉𝑉’ accounts for 

the viral removal from the body (Kirschner et al., 1997). In Table 1 all the 

parametrical values and the initial conditions are given to explore the 

numerical results. 

 

Table 1: Explanation of variables, parameters with their values involved in the model. 

Variables Description Values References 

  𝑇0 Number of healthy T-cells 50 mm−3 (Roy and Chatterjee, 2010) 

  𝐼0 Number of infected T-cells 50 mm−3 (Roy and Chatterjee, 2010) 

  𝑉0 Number of free Viruses 2 mm−3 (Roy and Chatterjee, 2010) 

Parameters    

  𝑠 Rate at which healthy T-cells are generated 10.0 mm−3day−1 
(Kirschner et al., 1997; Perelson and Nelson, 

1999; Culshaw and Ruan, 2000) 

  𝜌 Constant rate for growth of T-cells population 0.03 day−1 
(Kirschner et al., 1997; Hu et al., 2010; Perelson 

and Nelson, 1999; Wang and Li, 2006) 

  𝑇max Maximum T-cells growth level 1500 mm−3day−1 
(Kirschner et al., 1977; Hu et al., 2010; Perelson 

and Nelson, 1999; Wang and Li, 2006) 

  𝜇𝑇 Death rate of healthy T-cells 0.01 day−1 (Perelson and Nelson, 36; Zhou et al., 2008) 

  𝜅 Rate at which T-cells infected by free virus 0.002 mm−3day−1 (Bonhoeffer and Nowak, 1997) 

  𝜇𝐼 Death rate of virus producing T-cells 0.24 day−1 (Kirschner et al., 1993; Culshaw and Ruan, 2000) 

  𝛽 Killing rate of virus producing T-cells 0.001 mm−3day−1 (Bonhoeffer and Nowak, 1997) 

  𝜂 Reproduction rate of CD8+ T-cells 0.2 day−1 (Bonhoeffer and Nowak, 1997) 

  𝜇𝑉 Death rate of free viruses 0.02 day−1 (Bonhoeffer and Nowak, 1997) 

2.1 Modified Formulation 

In this section, we extended the model proposed and many others, 

considered the HIV infection model with simple logistic proliferation term, 

i.e., 𝜌𝑇(1 −
𝑇

𝑇max
) and constant source term for the supply of healthy T-cells, 

but recently most of the researchers proposed the HIV model with full 

logistic proliferation term, i.e., 𝜌𝑇(1 −
𝑇+𝐼

𝑇max
) and the variable source term, 

i.e., (
𝑠

1+𝑉
) (Roy and Chatterjee, 2010; Kirschner, 1996; Leenheer and Smith, 

2003; Wang and Ellermeyer, 2006; Ghoreishi et al., 2011; Wang and Li, 

2006; Wang and Song, 2007). Full logistic proliferation term represents 

the proliferation of both healthy and infected T-cells and the variable 

source term denotes the generated amount of new healthy T-cells from 

thymus and we consider source of healthy T-cells to be a decreasing 

function which depends on the concentration of free virus particles 

(Kirschner et al., 1997; Connor et al., 1993). The extended model is follows 

as:  

𝑑𝑇

𝑑𝑡
=

𝑠

1+𝑉
+ 𝜌𝑇(1 −

𝑇+𝐼

𝑇max
) − 𝜇𝑇𝑇 − 𝜅𝑇𝐼, (4) 

𝑑𝐼

𝑑𝑡
= 𝜅𝑇𝐼 − 𝜇𝐼𝐼 − 𝛽𝐼𝑉,                                                                                              (5) 

𝑑𝑉

𝑑𝑡
= 𝜂𝐼 − 𝜇𝑉𝑉.                                                                                              (6) 

where the dependent T(t), I(t) and V(t) represents the population of 

healthy T-cells, infected T-cells and free virus respectively. The 

explanation and the values of all parameters are given in Table 1. Disease-

free equation points are those steady state solutions where there is no 

disease. For steady state of Equation (4), when there is no virus, we impose 

the initial conditions 𝑇(0) = 𝑇0, 𝑉(0) = 0, and 𝐼(0) = 0. In order to 

understand the dynamical behavior of the Equations (4)–(6), we set right 

hand side of all equations in the system (4)–(6) equal to zero (Lashari and 

Zaman, 2012). We write Equation (4) as:  

𝐹(𝑡) =
𝑠

1+𝑉
+ 𝜌𝑇(1 −

𝑇+𝐼

𝑇max
) − 𝜇𝑇𝑇 − 𝜅𝑇𝐼 = 0.                                            (7) 

We have used the corresponding initial conditions and find out the 

solution by using quadratic formula. Direct calculations shows that the 

Equation (4) has a disease free point, which is  

𝑇0 =
𝑇max

2𝜌
{(𝜌 − 𝜇𝑇) ± √(𝜌 − 𝜇𝑇)2 +

4𝜌𝑠

𝑇max
}.                                               (8) 

The Equation (8) has two roots, one positive and other is negative, here, 

we skip the negative root and considered the positive root that represents 

physical possible steady state of the system in the absence of virus 

(Kirschner et al., 1993). 

2.2 Continuous Galerkin-Petrov Method 

The system of ODEs for HIV model (1)–(3) or (4)–(6) can considered as: 

Find 𝒖: [0, 𝑡𝑚𝑎𝑥] → 𝑽 = ℝ𝑑 such that  

𝑑𝑡𝐮(𝑡) = 𝐅(𝑡, 𝐮(𝑡))    for    𝑡 ∈ (0, 𝑡𝑚𝑎𝑥),

𝐮(0) = 𝐮0,
 (9) 

where 𝐮(𝑡) = [𝑇(𝑡), 𝐼(𝑡), 𝑉(𝑡)] and 𝐅 is the nonlinear right hand side 

vector valued function. At 𝑡 = 0, 𝑢1(0) = 𝑇(0) = 𝑇0, 𝑢2(0) = 𝐼(0) = 𝐼0 and 

𝑢3(0) = 𝑉(0) = 𝑉0, where 𝑇0, 𝐼0 and 𝑉0 are the initial conditions given in 

Table 1. 

In order to find the approximate solution of (9), we partitioned the time 

interval 𝐼: = [0, 𝑡𝑚𝑎𝑥] into a number of small pieces 𝐼𝑛: = (𝑡𝑛−1, 𝑡𝑛), where 

𝑛 ∈ {1, … , 𝑁} and 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁−1 < 𝑡𝑁 = 𝑡𝑚𝑎𝑥. 

The symbol 𝜏 = 𝑡𝑛 − 𝑡𝑛 is used to represent the maximum time step size. 

For the derivation of the cGP-method, the system of equations in (9) is 

multiplied with a suitable test functions (see for more details) and 

integrate over 𝐼𝑛 (Schieweck, 2010; Hussain et al., 2011; Matthies and 

Schieweck, 2011). The discrete solution 𝐮𝜏|𝐼𝑛
 can be represent by the 

polynomial ansatz. 

𝐮𝜏|𝐼𝑛
(𝑡): = ∑𝑘

𝑗=0 𝐔𝑛
𝑗

𝜙𝑛,𝑗(𝑡),                                                              (10) 

where 𝐔𝑛
𝑗

 are the members of the function space 𝐕 and the basis functions 

𝜙𝑛,𝑗 ∈ ℙ𝑘(𝐼𝑛) can be chosen as Lagrange basis functions w. r. t. the 𝑘 + 1 

points 𝑡𝑛,𝑗 ∈ 𝐼𝑛 with the following assumption  

𝜙𝑛,𝑗(𝑡𝑛,𝑖) = 𝛿𝑖,𝑗 ,        𝑖, 𝑗 = 0, … , 𝑘                                                        (11) 

where 𝛿𝑖,𝑗  is the usual Kronecker delta. We choose the points as 𝑡𝑛,0 = 𝑡𝑛−1 

and 𝑡𝑛,1, … , 𝑡𝑛,𝑘 the (𝑘 + 1)-quadrature points of Gauß-Lobatto formula on 

each time interval. In this way, the initial condition can be written as: 

𝐔𝑛
0 = 𝐮𝜏|𝐼𝑛−1

(𝑡𝑛−1)    if    𝑛 ≥ 2            or            𝐔𝑛
0 = 𝐮0    if    𝑛 = 1. (12) 

The basis functions 𝜙𝑛,𝑗 ∈ ℙ𝑘(𝐼𝑛) of (10) are defined using the reference 

transformations (Schieweck, 2010; Hussain et al., 2011; Hussain et al., 

2012; Matthies et al., 2011). Similarly, the test basis functions 𝜓̂𝑖 ∈ ℙ𝑘−1(𝐼) 

are defined with appropriate choice in order to compute the coefficients 

(Schieweck, 2010; Hussain et al., 2011; Hussain et al., 2012; Matthies et al., 
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2011). Finally, the cGP(𝑘)-method reads:  

∑𝑘
𝑗=0 𝛼𝑖,𝑗𝐔𝑛

𝑗
=

𝜏𝑛

2
{𝐅(𝑡𝑛,𝑖 , 𝐔𝑛

𝑖 ) + 𝛽𝑖𝐅(𝑡𝑛,0, 𝐔𝑛
0)}   ∀ 𝑖 = 1,2,3, ⋯ , 𝑘, (13) 

where 𝐔𝑛
0 = 𝐔𝑛−1

𝑘  for 𝑛 > 1 and 𝐔1
0 = 𝑢0 for 𝑛 = 1, are the initial values 

and 𝛼𝑖,𝑗  and 𝛽𝑖 are defined are  

𝛼𝑖,𝑗 = 𝜑̂𝑗
′(𝑡̂𝑖) + 𝛽𝑖𝜑̂𝑗

′(𝑡̂0), 𝑡𝑛,𝑢 = 𝜔𝑛(𝑡̂𝜇)  and  𝛽𝑖 = 𝑤̂0𝜓̂𝑖(𝑡̂0). (14) 

Once the above system is solved, the initial condition for the next time 

interval 𝐼𝑛̅+1 is set to 𝐔𝑛+1
0 = 𝐔𝑛

𝑘 . For 𝑘 = 2, the coefficients 𝛼𝑖,𝑗  and 𝛽𝑖,𝑗 of 

the cGP(2)-method are computed as follows. 

2.2.1 The cGP(2) Method   

Three-point Gauß-Lobatto formula (Simpson rule) is used to define the 

quadratic basis functions with weights 𝑤̂0 = 𝑤̂2 = 1/3, 𝑤̂1 = 4/3 and 𝑡̂0 =

−1, 𝑡̂1 = 0, 𝑡̂2 = 1. Then, we get  

𝛼𝑖,𝑗 = (−
5

4
1

1

4
2 −4 2

),    𝛽𝑖 = (
1

2
−1

) ,    𝑖 = 1,2,    𝑗 = 0,1,2. 

Thus, the system to be solved for 𝐔𝑛
1 , 𝐔𝑛

2 ∈ 𝐕 from the known 𝐔𝑛
0 = 𝐔𝑛−1

2  

becomes:  

𝛼1,1𝐔𝑛
1 + 𝛼1,2𝐔𝑛

2 = −𝛼1,0𝐔𝑛
0 +

𝜏𝑛

2
{𝐅(𝑡𝑛,1, 𝐔𝑛

1 ) + 𝛽1𝐅(𝑡𝑛,0, 𝐔𝑛
0)}, (15) 

𝛼2,1𝐔𝑛
1 + 𝛼2,2𝐔𝑛

2 = −𝛼2,0𝐔𝑛
0 +

𝜏𝑛

2
{𝐅(𝑡𝑛,2, 𝐔𝑛

2) + 𝛽2𝐅(𝑡𝑛,0, 𝐔𝑛
0)}, (16) 

where 𝐔𝑛
0 represent the initial condition at the current time interval.  

2.3 Classical Explicit Runge-Kutta Method 

This method is very famous having order four developed by (Kutta, 

1901;Butcher, 2008).  

2.4 Comparison between the Solutions of cGP(2)-Method and RK4-

Method for the Model 

In this section, we have solved the extended model for HIV infection by 

using Runge-Kutta method of order four (RK4-method) and compared the 

results with those obtained from the cGP(2)-method. We illustrated the 

preciseness and effectiveness of the cGP(2)-method. All the computations 

are performed by using a computer code written in MATLAB TM. Tables 2–

4 show that the cGP(2)-method solutions for the model are very close to 

the RK4-method solutions and found a small differences between the 

values. In Figure 1a–1c, we observed that the results for 𝑇(𝑡), 𝐼(𝑡), 𝑉(𝑡) are 

overlapping over each other. Finally, we have computed the absolute error 

between the results of both method. From the comparison, we conclude 

that the proposed scheme is effective, reliable and shows better 

performance for obtaining the approximate solution of real world 

problems. 

 

Table 2: Difference between the results of cGP(2) and RK4 method for T(t). 

t 𝑖 cGP(2)-Method RK4-Method                             ∥ 𝒄𝑮𝑷(𝟐) − 𝑹𝑲𝟒 ∥ 

0.0 50.000000000000000 50.000000000000000 0.000000000000000E-000 

0.1 49.630067343055948 49.630067342311833 0.074411588002476E-008 

0.2 49.279971528595631 49.279971527134457 0.146117429267179E-008 

0.3 48.949272098558801 48.949272096408222 0.215057838204302E-008 

0.4 48.637537080231205 48.637537077419310 0.281189471706966E-008 

0.5 48.344343055338200 48.344343051893397 0.344480355352061E-008 

0.6 48.069275203421036 48.069275199371901 0.404913436113929E-008 

0.7 47.811927321677778 47.811927317052927 0.462485161278892E-008 

0.8 47.571901823335374 47.571901818163383 0.517199083560627E-008 

0.9 47.348809716505215 47.348809710814507 0.569070834899321E-008 

1.0 47.142270565361706 47.142270559180453 0.618125284290727E-008 

 

Table 3: Difference between the results of cGP(2) and RK4 method for I(t). 

t 𝑖 cGP(2)-Method RK4-Method                               ∥ 𝒄𝑮𝑷(𝟐) − 𝑹𝑲𝟒 ∥ 

0.0 50.000000000000000 50.000000000000000 0.000000000000000E-000 

0.1 49.290735743520315 49.290735743216572 0.030374280868273E-008 

0.2 48.583273721133715 48.583273720557500 0.057621463156465E-008 

0.3 47.878091707318433 47.878091706499710 0.081872286727958E-008 

0.4 47.175643347543620 47.175643346511052 0.103256780903394E-008 

0.5 46.476358601841703 46.476358600622675 0.121902843375210E-008 

0.6 45.780644221620769 45.780644220241363 0.137940503464051E-008 

0.7 45.088884255636934 45.088884254121943 0.151499079947826E-008 

0.8 44.401440581267330 44.401440579640287 0.162704338890762E-008 

0.9 43.718653457443814 43.718653455726994 0.171682046357091E-008 

1.0 43.040842095825035 43.040842094039476 0.178555836782834E-008 

Table 4: Difference between the results of cGP(2) and RK4 method for V(t).   

t 𝑖 cGP(2)-Method RK4-Method                               ∥ 𝒄𝑮𝑷(𝟐) − 𝑹𝑲𝟒 ∥ 

0.0 2.000000000000000 2.000000000000000 0.000000000000000E-000 

0.1 2.987914157758028 2.987914158513685 0.075565731449956E-008 

0.2 3.959700546934367 3.959700548415517 0.148115031350926E-008 

0.3 4.915432214578426 4.915432216754915 0.217648832290251E-008 

0.4 5.855191365894124 5.855191368735907 0.284178369724941E-008 

0.5 6.779068868217863 6.779068871695105 0.347724249394332E-008 

0.6 7.687163765189299 7.687163769272456 0.408315781186275E-008 

0.7 8.579582801717525 8.579582806377427 0.465990268594396E-008 

0.8 9.456439960264792 9.456439965472715 0.520792298175365E-008 

0.9 10.317856008893918 10.317856014621645 0.572772762552631E-008 

1.0 11.163958061454098 11.163958067673986 0.621988860416423E-008 
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Figure 1: Graphical comparison between the solutions of cGP(2)-method 

and RK4-method for 𝑇(𝑡), 𝐼(𝑡) and 𝑉(𝑡) 

3. NUMERICAL SIMULATIONS AND DISCUSSIONS 

In this section, we apply the cGP(2)-method for HIV model (4)–(6) and find 

out the numerical solutions of the extended HIV model. The initial values 

of the dependent variables, different parameter values and their 

explanations are given in Table 1. In order to see the effects of some 

parameters, we vary some of the parameters values and keep all other 

parameters values fixed. Figure 2a–2c represents the outputs for different 

values of ‘𝜇𝑇’. The Figure 2a depicts that when the death rate of healthy T-

cells ‘𝜇𝑇’ increases, the capability of healthy T-cells to fight against viruses 

reduces which causes the progression of AIDS. As a result, viruses make 

more copies during the initial stage. We also observe that during initial 

100 days approximately, the concentration of healthy T-cells increases but 

after one week approximately, due to the death of healthy T-cells, the 

concentration of healthy T-cells decreases again and touches the lowest 

level which signify that healthy T-cells are attacked by viruses.  

The production rate of healthy T-cells starts to oscillate by increasing the 

rate of ‘𝜇𝑇’. The oscillation in the concentration of healthy T-cells shows 

the fight between the immune cells and viruses and gradually, their level 

declines. Similarly, from the observation of Figure 2b, due to the death of 

healthy T-cells, the production rate of infected T-cells reaches to top level 

at the beginning, but after some weeks, it comes on bottom level due to the 

healthy T-cells response. Death of healthy T-cells causes the replication of 

viruses and after 100 days approximately, the infected T-cells increases. 

During some days, its wavelength starts decreasing with time and touches 

the lowest level and the production of infected T-cells starts to oscillate. 

Figure 2c represents the concentration of free HIV virus particles which 

indicates a very clear impact of ‘𝜇𝑇’. HIV viruses gain command from the 

infected T-cells, so their number would be high.  

As immune cells going to be decreased with the passage of time, so the 

quantity of free viruses rises. Therefore, the number of free viruses and 

infected T-cells increases while the concentration of healthy T-cells 

become smaller by increasing ‘𝜇𝑇’. The viruses attack on immune cells and 

convert the healthy T-cells into infected T-cells. Human body has the 

ability to recognize these viruses and fight off against. CD8 + T-cells are 

responsible to fight against HIV viruses. To study the functions of CD8 + T-

cells, we numerically integrate ‘𝜂’ which represents the rate at which 

CD8 + T-cells reproduce. These cells are responsible to detect the viruses 

and fight off against. Figure 2d–2f illustrates typical solutions for different 

values of ‘𝜂’. Figure 2d–2f demonstrates that if the potential of CD8 + T-

cells increases, it causes the increment in immunity response of healthy T-

cells and growth rate of healthy T-cells.  

Initially the total number of healthy T-cells increases. Meanwhile, viruses 

continue to attack on immune cells. For this reason, after 150 days 

approximately, the T-cells count decreases with time and touches the 

lowest level and at the same time, due to the production of healthy T-cells, 

immunity level rises which kills the infected T-cells. As a result of the 

reduction of infected T-cells, number of CD8 + T-cells again increases and 

this starts to oscillate. These results depict that high production rate of T-

cells is possible due increment in CD8 + T-cells and to reduce the virus 

concentration. If the long-term changes in the CD8 + T-cells response is 

sufficiently small, then the CD8 + T-cells response cannot be responsible 

for the reduction in virus load. Biologically, it suggests that the 

proliferation of CD8 + T-cells increases the possibility of the reduction of 

HIV infection. Figure 3a–3c depicts the behavior of 𝑇(𝑡), 𝐼(𝑡) and 𝑉(𝑡) for 

different values of ‘𝛽’ which represents the Killing rate of virus producing 

T-cells.  

We observed from the Figure 3a–3b that if the death rate of infected T-

cells increases then the viral load decreases due to the increment in the 

level of antibodies against HIV. Due to the death of infected T-cells, the 

number of viruses decay and the healthy T-cells population increases. We 

also observe that the early peak in 𝑉(𝑡) corresponds to primary infection. 

Primary infection is followed by a long period during which the viral load 

changes little. Ultimately, the viral load increases and goes to the top level 

which is the sign of full blown AIDS appear. But due to the death of infected 

T-cells, its level reduces and comes to the lowest position after 100 days 

approximately. This oscillation continues and free viruses decreases 

gradually. This observation suggests that high level of ‘𝛽’ would reduce the 

infection and decreases the production of free viruses. This may be a signal 

to therapists that they should find such a medicine which lower the viral 

production and these drugs may aid in suppressing the disease.  

Now, we illustrate the typical solutions of T(t), I(t) and V(t) for different 

values of ‘𝑠’ in Figure 3e–2f, where ‘𝑠’ denotes the rate of generation of new 

healthy T-cells from thymus. These results (Figure 2e–2f) depicts that 

large value of ‘𝑠’ has a role to block the evolution of the virus in the body 

and maintain balance between the virus and the defense system of 

human’s body. It could be seen that the viral load decreases during initial 

100 days approximately and the healthy T-cells population raises. The 

biological implications of these results are that for large value of ‘s’, the 

infection around a disease remains relatively high but after some period 

viral load goes to low level. In this case, there is a higher healthy T-cells 

concentration and a lower viral load. However, for small values of ‘𝑠’, 

infection converges to the chronic disease steady state and the virus 

persist. It means that human body can lower the infection due to the 

increment in the supply of healthy T-cells. 
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Figure 2: Numerical simulations of the model variables T(t), I(t) and V(t) 

for different values of ‘𝜇𝑇’ and ‘𝜂’. 

  

 

   

 

  

Figure 3: Graphical representation of T(t), I(t) and V(t) for different 

values of ‘𝜇𝐼’ and ‘𝑠’.    

4. CONCLUSION 

In this manuscript, we have studied the two forms of HIV infection model. 

In first form, growth of healthy T-cells is considered while source term for 

the generation of new healthy T-cells from thymus is taken constant. In the 

2nd form, we modified the model by considering the growth of both 

healthy T-cells and infected T-cells briefly full logistic proliferation of T-

cells and the source of healthy T-cells as a decreasing function depending 

on the concentration of free viruses briefly variable source term. We have 

applied the cGP(2)-method to solve the ordinary differential equations of 

both these models of HIV and studied the impact of different parameters 

involved in the model on the population dynamics of healthy T-cells, 

infected T-cells and free viruses.  

We have varied the values of different clinical parameters and observed 

their behavior e.g., the concentration of healthy T-cells increases while the 

population of infected T-cells and free virus are decreases with an increase 

in the death rate of healthy T-cells 𝜇𝑇, and the oscillation of dynamical 

change in concentration becoming more gradual. Reproduction number 𝜂 

has CD8+ T-cells has increasing effect on the population dynamics of 

healthy and infected T-cells while decreasing effect on the population 

dynamics of free Virus particles. The concentration of infected T-cells and 

virus decreases and the concentration of healthy T-cells increases with the 

increase in the killing rate of virus 𝛽. We observed a slightly change in the 

concentration of healthy/infected T-cells and virus by increasing the rate 

of generation of healthy T-cells. 

Biologically, it implies that some parameter values can cause the cell and 

virus population to fluctuate. In general, these process can be helpful to 

clinicians, as a range for possible parameter values can be suggested. 

Moreover, we have solved the HIV model with variable source term and 

full logistic proliferation term by using RK4-method and compared the 

Numerical results obtained by both methods. We computed the absolute 

errors between the results of healthy T-cells, infected T-cells and free HIV 

virus. Comparison clearly expose that the cGP(2)-method and RK4-

method provides the results of the model in a reasonably good agreement 

with each other. We concluded that the proposed method is effective and 

reliable for obtaining the numerical solution of the real world problems. 
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