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 Numerical solution of ordinary differential equations is the most important technique which is widely used 
for mathematical modelling in science and engineering. The differential equation that describes the problem 
is typically too complex to precisely solve in real-world circumstances. Since most ordinary differential 
equations are not solvable analytically, numerical computations are the only way to obtain information about 
the solution. Many different methods have been proposed and used is an attempt to solve accurately various 
types of ordinary differential equations. Among them, Runge-Kutta is a well-known and popular method 
because of their good efficiency. This paper contains an analysis for the computations of the modified Runge-
Kutta method for nonlinear second order initial value problems. This method is wide quite efficient and 
practically well suited for solving linear and non-linear problems. In order to verify the accuracy, we compare 
numerical solution with the exact solution. We also compare the performance and the computational effort 
of this method. In order to achieve higher accuracy in the solution, the step size needs to be small.  Finally, we 
take some examples of non-linear initial value problems (IVPs) to verify proposed method. The results of that 
example indicate that the convergence, stability analysis, and error analysis which are discussed to determine 
the efficiency of the method. 
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1. INTRODUCTION 

There are many analytical methods for finding the solution of ordinary 
differential equations. But a few numbers of differential equations have 
analytic solutions where large numbers of differential equations have no 
analytic solutions. In this case we use the numerical methods to get an 
approximate solution of a differential equation. There are many types of 
numerical methods such as Eulers method, Runge-Kutta method etc. 
Runge-Kutta method is the powerful numerical technique to solve the 
initial value problems (IVPs). The use of the Euler method to solve IVPs 
numerically is less efficient since it requires being small for obtaining 
reasonable accuracy. But in Runge-Kutta method, the derivatives of higher 
order are required and they are designed to give greater accuracy with the 
advantage of requiring only the functional values at some selected points 
on the sub-interval. We observe that in the Runge-Kutta method extremely 
small step size converges to the analytical solution. In addition, Runge-
Kutta method gives best results and it converges faster to an analytical 
solution and has less iteration to get accuracy in solution.  

The literature contains several methods which have been proposed to 
solve initial value problems. Islam, M. A. discussed accuracy analysis of 
numerical solutions of initial value problems (IVP) for ordinary 
differential equations (ODE), and the author discussed accurate solutions 
of initial value problems for ordinary differential equations with fourth 
order Runge-kutta method (Islam, 2015). Ogunrinde, Fadugba, and 
Okunlola studied on some numerical methods for solving initial value 
problems in ordinary differential equations (Ogunrinde et al., 2012). 

Ahamed, N. and Charan, S. proposed a numerical accuracy of Runge-Kutta 
second, third and fourth order (Ahamed et al., 2015). Adomian, G. 
proposed the Adomian decomposition method (ADM) for solving 
nonlinear differential equations (Adomian, 1998). Adomian, G. proposed a 
modified approach to the Adomian polynomials which converges a little 
faster than the original Adomian polynomials and is favorable for 
computer generation was introduced (Adomian, 1996). Wazwaz, A.M. 
proposed the proper use of the ADM has made it possible to obtain an 
analytic solution of a singular initial value problem when it is 
homogeneous or inhomogeneous (Wazwaz, 2002).  

Abdelrazec, A. H. M. proposed some of the merits of ADM method that are 
converge fast to the exact solution (Abdelrazec, 2008). Hasan, Y. Q., Zhu, L. 
M. proposed an efficient modification of the Adomian decomposition 
method for solving a singular initial value problem for a second-order 
ordinary differential equation (Hasan et al., 2008). Goeken, D., Johnson, O. 
proposed multi-step Runge–Kutta method can be thought of as replacing 
functional evaluations with higher order derivative approximations 
(Goeken et al., 2000). In Rabiei, F., and Ismail, F. presented fifth order 
improved Runge-Kutta method for solving ordinary differential equation 
(Rabiei et al., 2012). In Butcher, J. C. presented on fifth order Runge-Kutta 
methods (Butcher, 1995). In Butcher, J. C. proposed High order Runge-
Kutta methods are capable of achieving highly accurate approximations of 
differential equations solutions at lower computational cost than low 
order Runge-Kutta methods (Butcher, 1996). 

In this paper we apply modified fourth order Runge-Kutta method for 
solving initial value problem of second order ordinary differential 
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equation. A more robust and intricate numerical technique is the modified 
Runge-Kutta method. Some examples of different kinds of ordinary 
differential equations are given to verify our proposed formulation. The 
results of each numerical example indicate the convergence and error 
analysis is discussed to illustrate the efficiency of the present method. This 
work is organized this work as follows: methodology of our proposed 
numerical schemes is available in section 2. In section 3, some nonlinear 
differential equations are solved numerically by our proposed method and 
compare them with the existing results. In the last section, the conclusion 
of the paper is inserted. Finally, all the relevant references are included. 
We use MATLAB R2019a to get the numerical results as well as figures. 

2.   METHODOLOGY 

2.1   Derivation of Modified Runge-Kutta Method for Solutions of 
General Second Order Initial Value Problems 

Consider the second order IVP of the form 

 
𝑑2𝑦

𝑑𝑡2
+ 𝑝(𝑡)

𝑑𝑦

𝑑𝑡
+ 𝑞(𝑡)𝑦 = 𝑔(𝑡), 𝑦(𝑑) = 𝛼 , 𝑦′(𝑑) = 𝛽, 𝑑 ≤ 𝑡 ≤ 𝑒                   (1) 

where  𝑝(𝑡), 𝑞(𝑡), 𝑔(𝑡) are all continuous and differentiable functions of 
 𝑡 defined on the interval [𝑑, 𝑒]. 

Let    

𝑑𝑦

𝑑𝑡
= 𝑧 = 𝑓(𝑡, 𝑦, 𝑧) ,

𝑑𝑧

𝑑𝑡
= 𝑔(𝑡, 𝑦, 𝑧) , 𝑦(𝑑) = 𝛼 , 𝑦′(𝑑) = 𝛽, 𝑑 ≤ 𝑡 ≤ 𝑒         (2) 

Let [𝑑, 𝑒] be the interval over which we want to find the solution of 
equation (1). In actually we will not find a differentiable function that 

satisfies the initial value problem. Instead of, a set points  (𝑡𝑛 ,𝑦𝑛 , 𝑧𝑛) is 

generated which are used for approximation. Here means for convenience 
we subdivide the interval [𝑑, 𝑒] into 𝑀 equal subintervals and select mesh 
points as follows: 

𝑡𝑛 = 𝑑 + ℎ𝑛, for  𝑛 = 0,1,2,3 … … … … … , 𝑀 where ℎ =
(𝑑−𝑒)

𝑀
 

From the Taylor series expansion, we get  

 𝑦𝑛+1 = 𝑦𝑛 +
𝑦𝑛

′(𝑡𝑛+1−𝑡𝑛)

1!
+

𝑦𝑛
′′(𝑡𝑛+1−𝑡𝑛)2

2!
+

𝑦𝑛
′′′(𝑡𝑛+1−𝑡𝑛)3

3!
+ ⋯                          (3) 

Assuming that 𝑡 = 𝑡𝑛+1 = 𝑡𝑛 + ℎ, then the equation (3) becomes 

𝑦𝑛+1 = 𝑦𝑛 +
𝑦𝑛

′ℎ

1!
+

𝑦𝑛
′′ℎ2

2!
+

𝑦𝑛
′′′ℎ3

3!
+ ⋯                                                                                 (4) 

Let  ∆𝑦 = 𝑦𝑛+1 − 𝑦𝑛 and ∆𝑧 = 𝑧𝑛+1 − 𝑧𝑛 then   

∆y =
𝑦𝑛

′ℎ

1!
+

𝑦𝑛
′′ℎ2

2!
+

𝑦𝑛
′′′ℎ3

3!
+ ⋯                                                                                              (5) 

Similarly, we can write 

∆z =
𝑧𝑛

′ℎ

1!
+

𝑧𝑛
′′ℎ2

2!
+

𝑧𝑛
′′′ℎ3

3!
+ ⋯                                                                                                  (6) 

We note that 

 𝑦′ = 𝑓(𝑡, 𝑦, 𝑧)                                                                                                                (7) 

𝑧′ = 𝑔(𝑡, 𝑦, 𝑧)                                                                                                                   (8)  

By using chain rule, we have 

𝑦′′ = 𝑓′ =
𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑓

𝜕𝑧

𝜕𝑧

𝜕𝑡
= 𝑓𝑡 + 𝑓𝑦𝑓 + 𝑓𝑧𝑔                                                  (9)  

𝑧′′ = 𝑔′ =
𝜕𝑔

𝜕𝑡
+

𝜕𝑔

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑔

𝜕𝑧

𝜕𝑧

𝜕𝑡
= 𝑔𝑡 + 𝑔𝑦𝑓 + 𝑔𝑧𝑔                                              (10) 

𝑦′′′ = 𝑓′′ =
𝜕𝑓′

𝜕𝑡
+

𝜕𝑓′

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑓′

𝜕𝑧

𝜕𝑧

𝜕𝑡
   

 = (𝑓𝑡𝑡 + 𝑓𝑡𝑦𝑓 + 𝑓𝑡𝑧𝑔) + 𝑓(𝑓𝑡𝑦 + 𝑓𝑦𝑦𝑓 + 𝑓𝑦𝑧𝑔) + 𝑓𝑦(𝑓𝑡 + 𝑓𝑦𝑓 + 𝑓𝑧𝑔) +

𝑓𝑧(𝑔𝑡 + 𝑔𝑦𝑓 + 𝑔𝑧𝑔) + 𝑔(𝑓𝑡𝑧 + 𝑓𝑦𝑧𝑓 + 𝑓𝑧𝑧𝑔)                                                   (11)                                                                      

𝑧′′′ = 𝑔′′ =
𝜕𝑔′

𝜕𝑡
+

𝜕𝑔′

𝜕𝑦

𝜕𝑦

𝜕𝑡
+

𝜕𝑔′

𝜕𝑧

𝜕𝑧

𝜕𝑡
  

= (𝑔𝑡𝑡 + 𝑔𝑡𝑦𝑓 + 𝑔𝑡𝑧𝑔) + 𝑓(𝑔𝑡𝑦 + 𝑔𝑦𝑦𝑓 + 𝑔𝑦𝑧𝑔) + 𝑔𝑦(𝑓𝑡 + 𝑓𝑦𝑓 + 𝑓𝑧𝑔) +

𝑔𝑧(𝑔𝑡 + 𝑔𝑦𝑓 + 𝑔𝑧𝑔) + 𝑔(𝑔𝑡𝑧 + 𝑔𝑦𝑧𝑓 + 𝑔𝑧𝑧𝑔)                                               (12) 

where the subscripts 𝑡, 𝑦 and 𝑧 designate the differentiation with respect 
to 𝑡, 𝑦 and 𝑧 respectively. From equation (5) and (6) we get 

 ∆𝑦 = ℎ𝑓𝑛 +
ℎ2

2!
[𝑓𝑡 + 𝑓𝑦𝑓 + 𝑓𝑧𝑔]

𝑛
+

ℎ3

3!
[𝑓𝑡𝑡 + 𝑓𝑡𝑦𝑓 + 𝑓𝑡𝑧𝑔 + 𝑓(𝑓𝑡𝑦 + 𝑓𝑦𝑦𝑓 +

𝑓𝑦𝑧𝑔) + 𝑓𝑦(𝑓𝑡 + 𝑓𝑦𝑓 + 𝑓𝑧𝑔) + 𝑓𝑧(𝑔𝑡 + 𝑔𝑦𝑓 + 𝑔𝑧𝑔) + 𝑔(𝑓𝑡𝑧 + 𝑓𝑦𝑧𝑓 +

𝑓𝑧𝑧𝑔)]
𝑛

+ ⋯       (13) 

∆𝑧 = ℎ𝑔𝑛 +
ℎ2

2!
[𝑔𝑡 + 𝑔𝑦𝑓 + 𝑔𝑧𝑔]

𝑛
+

ℎ3

3!
[𝑔𝑡𝑡 + 𝑔𝑡𝑦𝑓 + 𝑔𝑡𝑧𝑔 + 𝑓(𝑔𝑡𝑦 +

𝑔𝑦𝑦𝑓 + 𝑔𝑦𝑧𝑔) + 𝑔𝑦(𝑓𝑡 + 𝑓𝑦𝑓 + 𝑓𝑧𝑔) + 𝑔𝑧(𝑔𝑡 + 𝑔𝑦𝑓 + 𝑔𝑧𝑔) + 𝑔(𝑔𝑡𝑧 +

𝑔𝑦𝑧𝑓 + 𝑔𝑧𝑧𝑔)]
𝑛

+ ⋯                                                                                                (14) 

where the subscript 𝑛 denotes that the functions to be evaluated at the 

point (𝑡𝑛 ,𝑦𝑛 , 𝑧𝑛). Runge-Kutta was the first to point out that it was possible 

to avoid the successive differentiation in the Taylor series while 
preserving the accuracy. The new feature is to set up a problem with 
undetermined parameters and make the result as higher order as possible 
by using evaluations of 𝑓(𝑡, 𝑦, 𝑧) and 𝑔(𝑡, 𝑦, 𝑧) within the interval 

(𝑡𝑛 ,𝑦𝑛 , 𝑧𝑛) and (𝑡𝑛+1 ,𝑦𝑛+1, 𝑧𝑛+1). In the other words, the derivatives in the 

Taylor series are passed by requiring 𝑓(𝑡, 𝑦, 𝑧) and 𝑔(𝑡, 𝑦, 𝑧). Thus, we set 
up the general single-step equations as follows: 

𝑦𝑛+1 = 𝑦𝑛 + ∑ 𝑤𝑖
𝑝
𝑖=1 𝑘𝑖  

∴ ∆𝑦 = ∑ 𝑤𝑖
𝑝
𝑖=1 𝑘𝑖                                                                                                                   (15) 

𝑧𝑛+1 = 𝑧𝑛 + ∑ 𝑤𝑖
𝑝
𝑖=1 𝑙𝑖   

∴ ∆𝑧 = ∑ 𝑤𝑖
𝑝
𝑖=1 𝑙𝑖                                                                                                                    (16) 

with the  𝑤𝑖  as weighting coefficients to be determined,  𝑝 as the number 
of  𝑓(𝑡, 𝑦, 𝑧) and 𝑔(𝑡, 𝑦, 𝑧)  substitutions, and the 𝑘𝑖, satisfying the explicit 
sequences. 

𝑘1 = ℎ𝑓(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑙1 = ℎ𝑔(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑘2 = ℎ𝑓(𝑡𝑛 + 𝑎1ℎ, 𝑦𝑛 + 𝑏1𝑘1, 𝑧𝑛 + 𝑐1𝑙1) 

𝑙2 = ℎ𝑔(𝑡𝑛 + 𝑎1ℎ, 𝑦𝑛 + 𝑏1𝑘1, 𝑧𝑛 + 𝑐1𝑙1) 

𝑘3 =  ℎ𝑓(𝑡𝑛 + 𝑎2ℎ, 𝑦𝑛 + 𝑏2𝑘1 + 𝑏3𝑘2, 𝑧𝑛 + 𝑐2𝑙1 + 𝑐3𝑙2) 

𝑙3 =  ℎ𝑔(𝑡𝑛 + 𝑎2ℎ, 𝑦𝑛 + 𝑏2𝑘1 + 𝑏3𝑘2, 𝑧𝑛 + 𝑐2𝑙1 + 𝑐3𝑙2) 

𝑘4 =  ℎ𝑓(𝑡𝑛 + 𝑎3ℎ, 𝑦𝑛 + 𝑏4𝑘1 + 𝑏5𝑘2 + 𝑏6𝑘3, 𝑧𝑛 + 𝑐4𝑙1 + 𝑐5𝑙2 + 𝑐6𝑙3) 

𝑙4 =  ℎ𝑔(𝑡𝑛 + 𝑎3ℎ, 𝑦𝑛 + 𝑏4𝑘1 + 𝑏5𝑘2 + 𝑏6𝑘3, 𝑧𝑛 + 𝑐4𝑙1 + 𝑐5𝑙2 + 𝑐6𝑙3) 

𝑘5 =  ℎ𝑓(𝑡𝑛 + 𝑎4ℎ, 𝑦𝑛 + 𝑏7𝑘1 + 𝑏8𝑘2 + 𝑏9𝑘3 + 𝑏10𝑘4, 𝑧𝑛 + 𝑐7𝑙1 + 𝑐8𝑙2

+ 𝑐9𝑙3 + 𝑐10𝑙4) 

𝑙5 =  ℎ𝑔(𝑡𝑛 + 𝑎4ℎ, 𝑦𝑛 + 𝑏7𝑘1 + 𝑏8𝑘2 + 𝑏9𝑘3 + 𝑏10𝑘4, 𝑧𝑛 + 𝑐7𝑙1 + 𝑐8𝑙2

+ 𝑐9𝑙3 + 𝑐10𝑙4) 

𝑘6 =  ℎ𝑓(𝑡𝑛 + 𝑎5ℎ, 𝑦𝑛 + 𝑏11𝑘1 + 𝑏12𝑘2 + 𝑏13𝑘3 + 𝑏14𝑘4 + 𝑏15𝑘5, 𝑧𝑛 + 𝑐11𝑙1

+ 𝑐12𝑙2 + 𝑏13𝑙3 + 𝑐14𝑙4 + 𝑐15𝑙5) 

It can be seen that there are parameters 𝑤1, 𝑤2, … … … , 𝑤𝑝 and 𝑙1, 𝑙2, … … , 𝑙𝑝 

in (16) and 𝑎1,𝑎2,𝑎3,𝑎4,𝑎5, … … … , 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8, 𝑏9, 𝑏10, 𝑏11, 𝑏12 
, 𝑏13, 𝑏14, 𝑏15, … … … … … … and  𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8, 𝑐9, 𝑐10, 𝑐11, 𝑐12, 𝑐13, 
, 𝑐14, 𝑐15, … … … that must be determined. Each set of parameters when 
determined will specify the points 𝑓(𝑡, 𝑦, 𝑧) and 𝑔(𝑡, 𝑦, 𝑧) at which 
𝑓(𝑡, 𝑦, 𝑧) and 𝑔(𝑡, 𝑦, 𝑧) is to be evaluated. Thus, while the overall 
calculation yields  𝑦𝑛+1 and 𝑧𝑛+1 and it is necessary to evaluate 
𝑓(𝑡, 𝑦, 𝑧) and 𝑔(𝑡, 𝑦, 𝑧) . 

2.2   Derivation of Second Order Runge-Kutta Method for Solution of 
Second Order Initial Value Problems 

We start the simple derivation of order two since it is easier to understand 
and illustrate the principle involved.  

If we take p =2, then equation (15) becomes  

∆𝑦 = 𝑤1𝑘1 + 𝑤2𝑘2                                                                                                                (17) 

where  

𝑘1 = ℎ𝑓(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛)           

𝑙1 = ℎ𝑔(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑘2 = ℎ𝑓(𝑡𝑛 + 𝑎1ℎ, 𝑦𝑛 + 𝑏1𝑘1, 𝑧𝑛 + 𝑐1𝑙1)                                                                             (18) 

𝑙2 = ℎ𝑔(𝑡𝑛 + 𝑎1ℎ, 𝑦𝑛 + 𝑏1𝑘1, 𝑧𝑛 + 𝑐1𝑙1)                                                                              (19) 

Since the equation (17) consists of two terms, it is often referred to as a 
second formula. We now seek to determine the following 
constants: 𝑤1, 𝑤2, 𝑎1, 𝑏1, 𝑐1 
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The Taylor series for three independent variables 𝑡, 𝑦 & 𝑧 about the point 
(𝑎, 𝑏, 𝑐) is 

𝑓(𝑡, 𝑦, 𝑧) = 𝑓(a + h, b + k, c + l) = 𝑓(a, b, c) + h𝑓𝑡(a, b, c) + k𝑓𝑦(a, b, c) +

𝑙𝑓𝑧(a, b, c) +
1

2!
[h2𝑓𝑡𝑡(𝑎, 𝑏, 𝑐) + 2ℎ𝑘𝑓𝑡𝑦(𝑎, 𝑏, 𝑐) + 2ℎ𝑙𝑓𝑡𝑧(𝑎, 𝑏, 𝑐)  +

2𝑘𝑙𝑓𝑦𝑧(𝑎, 𝑏, 𝑐) + 𝑘2𝑓𝑦𝑦(𝑎, 𝑏, 𝑐) + 𝑙2𝑓𝑧𝑧(𝑎, 𝑏, 𝑐)] + ⋯                                     (20) 

𝑔(𝑡, 𝑦, 𝑧) = 𝑔(a + h, b + k, c + l) = 𝑔(a, b, c) + h𝑔𝑡(a, b, c) + k𝑔𝑦(a, b, c) +

𝑙𝑔𝑧(a, b, c) +
1

2!
[h2𝑔𝑡𝑡(𝑎, 𝑏, 𝑐) + 2ℎ𝑘𝑔𝑡𝑦(𝑎, 𝑏, 𝑐) + 2ℎ𝑙𝑔𝑡𝑧(𝑎, 𝑏, 𝑐)  +

2𝑘𝑙𝑔𝑦𝑧(𝑎, 𝑏, 𝑐) + 𝑘2𝑔𝑦𝑦(𝑎, 𝑏, 𝑐) + 𝑙2𝑔𝑧𝑧(𝑎, 𝑏, 𝑐)] + ⋯                                 (21) 

This can be symbolically written as 

𝑓(𝑡, 𝑦, 𝑧) = 𝑓(a + h, b + k, c + l) = 𝑓(a, b, c) + (h
𝜕

𝜕𝑡
+ 𝑘

𝜕

𝜕𝑦
+

𝑙
𝜕

𝜕𝑧
) 𝑓(𝑎, 𝑏, 𝑐) +

1

2!
(h

𝜕

𝜕𝑡
+ 𝑘

𝜕

𝜕𝑦
+ 𝑙

𝜕

𝜕𝑧
)

2

𝑓(𝑎, 𝑏, 𝑐) + ⋯                                 (22) 

and 𝑔(𝑡, 𝑦, 𝑧) = 𝑔(a + h, b + k, c + l) = 𝑔(a, b, c) + (h
𝜕

𝜕𝑡
+ 𝑘

𝜕

𝜕𝑦
+

𝑙
𝜕

𝜕𝑧
) 𝑔(𝑎, 𝑏, 𝑐) +

1

2!
(h

𝜕

𝜕𝑡
+ 𝑘

𝜕

𝜕𝑦
+ 𝑙

𝜕

𝜕𝑧
)

2

𝑔(𝑎, 𝑏, 𝑐) + ⋯                                (23) 

Now                                                                 

𝑘1 = ℎ𝑓𝑛 

𝑙1 = ℎ𝑔𝑛 

Using (22) into (18) we get, 

𝑘2 = ℎ𝑓(𝑡𝑛 + 𝑎1ℎ, 𝑦𝑛 + 𝑏1𝑘1, 𝑧𝑛 + 𝑐1𝑙1) 

= ℎ [𝑓(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) + (𝑎1ℎ
𝜕

𝜕𝑡
+ 𝑏1𝑘1

𝜕

𝜕𝑦
+ 𝑐1𝑙1

𝜕

𝜕𝑧
)𝑓(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) +  … … … ] 

= ℎ [𝑓𝑛 + (𝑎1ℎ
𝜕

𝜕𝑡
+ 𝑏1𝑘1

𝜕

𝜕𝑦
+ 𝑐1𝑙1

𝜕

𝜕𝑧
) 𝑓𝑛 + … … … ] 

= ℎ [𝑓𝑛 + (𝑎1ℎ
𝜕

𝜕𝑡
+ 𝑏1ℎ𝑓𝑛

𝜕

𝜕𝑦
+ 𝑐1ℎ𝑔𝑛

𝜕

𝜕𝑧
) 𝑓𝑛 + … … … ] 

= ℎ𝑓𝑛 + ℎ2(𝑎1𝑓𝑡 + 𝑏1𝑓𝑛𝑓𝑦 + 𝑐1𝑔𝑛𝑓𝑧) + 0(ℎ3) 

Similarly, 

  𝑙2 = ℎ [𝑔𝑛 + (𝑎1ℎ
𝜕

𝜕𝑡
+ 𝑏1𝑘1

𝜕

𝜕𝑦
+ 𝑐1𝑙1

𝜕

𝜕𝑧
) 𝑔𝑛] + 0(ℎ3) 

= ℎ𝑔𝑛 + ℎ2(𝑎1𝑔𝑡 + 𝑏1𝑓𝑛𝑔𝑦 + 𝑐1𝑔𝑛𝑔𝑧) + 0(ℎ3) 

Introducing the above values into equation (17) we get,  

∆𝑦 = ℎ(𝑤1 + 𝑤2)𝑓𝑛 + ℎ2[𝑎1𝑤2𝑓𝑡 + 𝑏1𝑤2𝑓𝑓𝑦 + 𝑐1𝑤2𝑔𝑓𝑧]
𝑛

  + 0(ℎ3)         (24) 

Also from equation (13) we have, 

∆𝑦 = ℎ𝑓𝑛 +
ℎ2

2!
[𝑓𝑡 + 𝑓𝑦𝑓 + 𝑔𝑓𝑧]

𝑛
+ 0(ℎ3)                                                               (25) 

Equating the corresponding terms between equation (24) and (25) yield 

   𝑓:    𝑤1 + 𝑤2 = 1       

𝑓𝑡 :        𝑎1𝑤2 =
1

2
 

𝑓𝑓𝑦:        𝑏1𝑤2 =
1

2
 

𝑔𝑓𝑧:        𝑐1𝑤2 =
1

2
 

Here only three equations with four unknowns. If we take 𝑤2 as a free 

variable, choose 𝑤2 =
1

2
  then it leads to 𝑎1 = 1, 𝑏1 = 1, 𝑐1 = 1 and 𝑤1 =

1

2
 

 Putting the values of 𝑤1𝑎𝑛𝑑𝑤2 into (17), we get  

∆𝑦 =
1

2
(𝑘1 + 𝑘2) 

⇒𝑦𝑛+1 = 𝑦𝑛 +
1

2
(𝑘1 + 𝑘2) 

where, 

𝑘1 = ℎ𝑓(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑙1 = ℎ𝑔(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑘2 = ℎ𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘1, 𝑧𝑛 + 𝑙1) 

𝑙2 = ℎ𝑔(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘1, 𝑧𝑛 + 𝑙1) 

This is the required Runge-Kutta second order method. 

2.3   Derivation of Fourth Order Runge-Kutta Method for Solution of 
Second Order Initial Value Problems   

If we take p = 4, then equation (15) becomes  

∆𝑦 = 𝑤1𝑘1 + 𝑤2𝑘2 + 𝑤3𝑘3 + 𝑤4𝑘4                                                                                     (26) 

where  

𝑘1 = ℎ𝑓(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑙1 = ℎ𝑔(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑘2 = ℎ𝑓(𝑡𝑛 + 𝑎1ℎ, 𝑦𝑛 + 𝑏1𝑘1, 𝑧𝑛 + 𝑐1𝑙1) 

𝑙2 = ℎ𝑔(𝑡𝑛 + 𝑎1ℎ, 𝑦𝑛 + 𝑏1𝑘1, 𝑧𝑛 + 𝑐1𝑙1) 

𝑘3 =  ℎ𝑓(𝑡𝑛 + 𝑎2ℎ, 𝑦𝑛 + 𝑏2𝑘1 + 𝑏3𝑘2, 𝑧𝑛 + 𝑐2𝑙1 + 𝑐3𝑙2) 

𝑙3 =  ℎ𝑔(𝑡𝑛 + 𝑎2ℎ, 𝑦𝑛 + 𝑏2𝑘1 + 𝑏3𝑘2, 𝑧𝑛 + 𝑐2𝑙1 + 𝑐3𝑙2) 

𝑘4 =  ℎ𝑓(𝑡𝑛 + 𝑎3ℎ, 𝑦𝑛 + 𝑏4𝑘1 + 𝑏5𝑘2 + 𝑏6𝑘3, 𝑧𝑛 + 𝑐4𝑙1 + 𝑐5𝑙2 + 𝑐6𝑙3) 

𝑙4 =  ℎ𝑔(𝑡𝑛 + 𝑎3ℎ, 𝑦𝑛 + 𝑏4𝑘1 + 𝑏5𝑘2 + 𝑏6𝑘3, 𝑧𝑛 + 𝑐4𝑙1 + 𝑐5𝑙2 + 𝑐6𝑙3) 

Since the equation consists of four terms, it is often referred to as a fourth 
order formula. We now seek to determine the following constants: 
𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6 and 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6 . 

The most useful choice is 𝑎1 =
1

2
 and 𝑏1 = 0,  𝑐1 = 0. Then the solutions for 

the remaining variables are as follows: 

𝑎2 =
1

2
 , 𝑎3 = 1 , 𝑏2 = 0, 𝑏3 =

1

2
 ,   𝑏4 = 0, 𝑏5 = 0, 𝑏6 = 1, 𝑐2 = 0,

𝑐3 =
1

2
 , 𝑐4 = 0, 𝑐5 = 0, 𝑐6 = 1   

𝑤1 =
1

6
 ,  𝑤2 =

1

3
 ,  𝑤3 =

1

3
,  𝑤4 =

1

6
 

Substituting the values into the equation (26), we obtain  

∆𝑦 =
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

⇨ 𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

where                                                          

𝑘1 = ℎ𝑓(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑙1 = ℎ𝑔(𝑡𝑛 , 𝑦𝑛 , 𝑧𝑛) 

𝑘2 = ℎ𝑓 (𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
, 𝑧𝑛 +

𝑙1

2
) 

𝑙2 = ℎ𝑔(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘1

2
, 𝑧𝑛 +

𝑙1

2
) 

𝑘3 = ℎ𝑓 (𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
, 𝑧𝑛 +

𝑙2

2
) 

𝑙3 = ℎ𝑔(𝑡𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2

2
, 𝑧𝑛 +

𝑙2

2
) 

𝑘4 = ℎ𝑓(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3, 𝑧𝑛 + 𝑙3)  

𝑙4 = ℎ𝑔(𝑡𝑛 + ℎ, 𝑦𝑛 + 𝑘3, 𝑧𝑛 + 𝑙3) 

This is the required Runge-Kutta fourth order method. 

3.   RESULTS AND DISCUSSION 

In this section, we consider four nonlinear initial value problems to verify 
the proposed formulation which are available in the existing literature. For 
this we give the results in brief depending on prescribed boundary.  

Example 1 

We consider the following non-linear initial value problem for equating 
our algorithm with the current algorithm (Al-khaled and Anwar, 2007) 

 
𝑑2𝑦

𝑑𝑥2
=

8𝑦2

1+2𝑥
,  𝑦(0) = 1,  𝑦′(0) = −2,  0 < 𝑥 < 1                                              (27) 

whose exact solution is given by  𝑦(𝑥) =
1

1+2𝑥
; using the method discussed 

in section two, the results are summarized in Table 1. 
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Table 1: Numerical Results of Example 1 

x Exact values 
Modified RK-fourth order 

Approximate values Relative error 

0.0 1.0000000000000000 1.0000005152061686 5.15206E-07 

1/20 0.9090909090909091 0.9090914242970778 5.66727E-07 

2/20 0.8333333333333334 0.8333338485395021 6.18247E-07 

3/20 0.7692307692307692 0.7692312844369379 6.69768E-07 

4/20 0.7142857142857143 0.7142862294918830 7.21289E-07 

5/20 0.6666666666666666 0.6666671818728354 7.72809E-07 

6/20 0.6250000000000000 0.6250005152061687 8.24330E-07 

7/20 0.5882352941176470 0.5882358093238157 8.75850E-07 

8/20 0.5555555555555556 0.5555560707617243 9.27371E-07 

9/20 0.5263157894736842 0.5263163046798529 9.78892E-07 

10/20 0.5000000000000000 0.5000005152061687 1.03041E-06 

11/20 0.4761904761904762 0.4761909913966449 1.08193E-06 

12/20 0.4545454545454545 0.4545459697516233 1.13345E-06 

13/20 0.4347826086956522 0.4347831239018209 1.18497E-06 

14/20 0.4166666666666667 0.4166671818728354 1.23649E-06 

15/20 0.4000000000000000 0.4000005152061688 1.28802E-06 

16/20 0.3846153846153846 0.3846158998215533 1.33954E-06 

17/20 0.3703703703703704 0.3703708855765391 1.39106E-06 

18/20 0.3571428571428572 0.3571433723490259 1.44258E-06 

19/20 0.3448275862068966 0.3448281014130653 1.49410E-06 

1.0 0.3333333333333333 0.3333338485395020 1.54562E-06 

It is seen that in Table 1, maximum relative error by our proposed method is 1.49 × 10−6 whereas by Al-khaled and Anwar, 2007 is 1.40 × 10−4. 

Example 2 

We consider the following non-linear initial value problem for equating 
our algorithm with the current algorithm (Al-khaled and Anwar, 2007) 

 
𝑑2𝑦

𝑑𝑥2
= −𝑒−2𝑦, 𝑦(0) = 1, 𝑦′(0) =

1

𝑒
,  0 < 𝑥 < 1                                              (28) 

whose exact solution is given by  𝑦(𝑥) = ln(𝑥 + 𝑒); using the method 
discussed in section two, the results are summarized in Table 2. 

Table 2: Numerical Results of Example 2 

x Exact values 
Modified RK-fourth order 

Approximate values Relative error 

0.0 1.0000000000000000 1.0000000078938826 7.89388E-09 

1/20 1.0182268492122895 1.0182268471442120 2.03105E-09 

2/20 1.0361274185748344 1.0361274165434475 1.96056E-09 

3/20 1.0537131844573173 1.0537131824613417 1.89423E-09 

4/20 1.0709950281849114 1.0709950262231334 1.83174E-09 

5/20 1.0879832764774002 1.0879832745486679 1.77277E-09 

6/20 1.1046877385103153 1.1046877366135339 1.71703E-09 

7/20 1.1211177399311396 1.1211177380652677 1.66429E-09 

8/20 1.1372821541259368 1.1372821522899832 1.61433E-09 

9/20 1.1531894309988706 1.1531894291918909 1.56694E-09 

10/20 1.1688476234983058 1.1688476217193999 1.52194E-09 

11/20 1.1842644120979606 1.1842644103462694 1.47915E-09 

12/20 1.1994471274194201 1.1994471256941230 1.43841E-09 

13/20 1.2144027711628125 1.2144027694631268 1.39961E-09 

14/20 1.2291380354952466 1.2291380338204223 1.36260E-09 

15/20 1.2436593210313902 1.2436593193807108 1.32728E-09 

16/20 1.2579727535271203 1.2579727518998995 1.29353E-09 

17/20 1.2720841993952090 1.2720841977907895 1.26125E-09 

18/20 1.2859992801414097 1.2859992785591612 1.23036E-09 

19/20 1.2997233858098522 1.2997233842491702 1.20078E-09 

1.0 1.3132616875182230 1.3132616859785275 1.17242E-09 

It is seen that in Table 2, maximum relative error by our proposed method is 2.03 × 10−9 whereas by Al-khaled and Anwar, 2007 is 2.20 × 10−6. 
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Figure 1: Approximate vs analytical solutions for Example 1 

 

Figure 2: Approximate vs Analytical Solutions for Example 2. 

Example 3 

We consider the following non-linear initial value problem for equating 
our algorithm with the current algorithm (Abdelraze, 2008) 

𝑑2𝑦

𝑑𝑥2
+ 𝑒−2𝑥𝑦3 = 2𝑒𝑥  , 𝑦(0) = 𝑦′(0) = 1, 0 < 𝑥 < 1                                       (29) 

whose exact solution is given by 𝑦(𝑥) = 𝑒𝑥  ; using the method discussed 
in section two, the results are summarized in Table 3. 

Table 3: Numerical Results of Example 3 

x Exact values 
Modified RK-fourth order 

Approximate values Relative error 

0.0 1.0000000000000000 1.0000000078938826 5.46001E-11 

1/20 1.0182268492122895 1.0182268471442120 5.46006E-11 

2/20 1.0361274185748344 1.0361274165434475 5.46071E-11 

3/20 1.0537131844573173 1.0537131824613417 5.46034E-11 

4/20 1.0709950281849114 1.0709950262231334 5.46093E-11 

5/20 1.0879832764774002 1.0879832745486679 5.46017E-11 

6/20 1.1046877385103153 1.1046877366135339 5.46057E-11 

7/20 1.1211177399311396 1.1211177380652677 5.46063E-11 

8/20 1.1372821541259368 1.1372821522899832 5.46044E-11 

9/20 1.1531894309988706 1.1531894291918909 5.46064E-11 

10/20 1.1688476234983058 1.1688476217193999 5.46059E-11 

11/20 1.1842644120979606 1.1842644103462694 5.46026E-11 

12/20 1.1994471274194201 1.1994471256941230 5.46067E-11 

13/20 1.2144027711628125 1.2144027694631268 5.46060E-11 

14/20 1.2291380354952466 1.2291380338204223 5.46045E-11 

15/20 1.2436593210313902 1.2436593193807108 5.46056E-11 

16/20 1.2579727535271203 1.2579727518998995 5.46071E-11 

17/20 1.2720841993952090 1.2720841977907895 5.46024E-11 

18/20 1.2859992801414097 1.2859992785591612 5.46063E-11 

19/20 1.2997233858098522 1.2997233842491702 5.46039E-11 

1.0 1.3132616875182230 1.3132616859785275 5.46042E-11 

It is seen that in Table 3, maximum relative error by our proposed method is 5.46093 × 10−11 whereas by Abdelraze, 2008 is 4.792 × 10−3.  
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Figure 3: Approximate vs analytical solutions for Example 3 

Example 4 

We consider the following non-linear initial value problem for equating 
our algorithm with the current algorithm (Abdelraze, 2008) 

−
𝑑2𝑦

𝑑𝑥2
+ (1 −

3

cosh2( 𝑥)
) 𝑦 + 𝑦3 = 0,   𝑦(0) = 1, 𝑦′(0) = 0, 0 < 𝑥 < 1       (30) 

whose exact solution is given by 𝑦(𝑥) = sech(𝑥) ; using the method 
discussed in section two, the results are summarized in Table 4. 

Table 4: Numerical Results of Example 4 

x Exact values 
Modified RK-fourth order 

Approximate values Relative error 

0.0 1.0000000000000000 0.9999999688884305 3.11116E-08 

1/20 0.9987513007608890 0.9987512696493195 3.11505E-08 

2/20 0.9950207489532266 0.9950207178416570 3.12673E-08 

3/20 0.9888545124349606 0.9888544813233910 3.14622E-08 

4/20 0.9803279976447253 0.9803279665331558 3.17359E-08 

5/20 0.9695436291402145 0.9695435980286450 3.20889E-08 

6/20 0.9566279119002483 0.9566278807886788 3.25221E-08 

7/20 0.9417279294851757 0.9417278983736062 3.30367E-08 

8/20 0.9250074519057549 0.9250074207941854 3.36339E-08 

9/20 0.9066428345104007 0.9066428033988312 3.43151E-08 

10/20 0.8868188839700740 0.8868188528585045 3.50822E-08 

11/20 0.8657248513182940 0.8657248202067245 3.59370E-08 

12/20 0.8435506876218067 0.8435506565102372 3.68817E-08 

13/20 0.8204836682568648 0.8204836371452953 3.79186E-08 

14/20 0.7967054599928750 0.7967054288813055 3.90503E-08 

15/20 0.7723896738572644 0.7723896427456949 4.02796E-08 

16/20 0.7476999182374196 0.7476998871258500 4.16097E-08 

17/20 0.7227883423692113 0.7227883112576418 4.30438E-08 

18/20 0.6977946411003322 0.6977946099887626 4.45856E-08 

19/20 0.6728454778385035 0.6728454467269339 4.62388E-08 

1.0 0.6480542736638854 0.6480542425523158 4.80077E-08 

It is seen that in Table 4, maximum relative error by our proposed method is 4.62388 × 10−8 whereas by Abdelraze, 2008 is 8.0752 × 10−3. 

 

Figure 4: Approximate vs analytical solutions for Example 4. 
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4.   CONCLUSIONS 

In this work, we have discussed second and fourth order modified Runge-
Kutta method for solving second order initial value problems that provides 
efficient solutions. To achieve the desired accuracy of the numerical 
solution it is necessary to take step size small. From the tables and figures, 
we can see that accuracy of the method obtained for decreasing the step 
size ℎ. It may be concluded that the modified Rung-Kutta method is 
powerful and more efficient in finding numerical solutions of second order 
initial value problems. The results obtained in the literature are in 
excellent agreement with exact solution compared to the existing 
methods. Our research will be helpful in many scientific areas where 
numerical computations are needed.  
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