$$\int T(x) \cdot \frac{\partial}{\partial \theta} f(x,\theta) dx = M \left[T(\xi) \cdot \frac{\partial}{\partial \theta} \ln L(\xi,\theta) \right] \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \left(\frac{\partial}{\partial \theta} \ln L(x,\theta) \right) \cdot f(x,\theta) dx = \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot \int_{\mathbb{R}^{n}}^{\mathbb{R}^{n}} T(x) \cdot$$

Matrix Science Mathematic (MSMK)

HEAD OFFICE ADDRESS:

Zibeline International Publishing Sdn Bhd

C2-2-3, Block 2, CBD Perdana 3, Persiaran Cyberpoint Timur, Cyber 12, 63000 Cyberjaya, Selangor.

Tel: +603-86879842

EDITORIAL STAFF:

Publishing Manager

Tasbia Ab Rajul

Publishing Editor

Nurul Afiqah Ab Manan

Publishing Editor

Rozalaidah Abdul Karim

Technical Editor

Nuraliah Natasha Amirrulhisam

Technical Editor

Muhammad Aqil Zikry Mohd Nizam

Frequency:

Bi-annual (2 issue per year)

ISSN: 2521-0831 (Print) ISSN: 2521-084X (Online)

Price:

Single issue: 50 MYR Price for abroad Single issue: 25 USD

Web:

www.matrixsmathematic.com

E-mail:

info@zibelinepub.com

Matrix Science Mathematic (MSMK)

Contents

VOLUME 7, ISSUE 2, 2023		
No	Editorial	Pages
1	EFFECTS OF TEACHING QUALITY, TEACHING COMPETENCE, AND MATHEMATICS CONNECTION ON MATHEMATICS ACHIEVEMENT MOTIVATION AMONG SENIOR HIGH SCHOOL STUDENTS IN GHANA	50-55
2	A COMPARATIVE STUDY OF TWO METHODS FOR SOLVING QUADRATIC EQUATIONS	56-59
3	A UNIQUE METHOD FOR THE TRISECTION OF AN ARBITRARY ANGLE	60-64
4	INVESTIGATING HINDRANCE FACTORS WHICH FORESTALLED TEACHERS' PARTICIPATION IN PERFORMANCE CONTRACTS IN SENIOR HIGH SCHOOLS IN GHANA	65-71
5	A COMPREHENSIVE APPROACH TO EVALUATING SOLUTIONS OF DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS USING LAPLACE TRANSFORM	72-79
6	APPLICATION OF DYNAMIC REGRESSION (DR) TO MODELING OF THE GROSS DOMESTIC PRODUCT (GDP) OF NIGERIA	80-90
7	COMPLEMENTAL BINARY OPERATIONS OF SETS AND THEIR APPLICATION TO GROUP THEORY	91-98

Matrix Science Mathematic (MSMK)

Editorial

Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full account of the research must be provided so that the results can be reproduced. Electronic files or software which provide the full details of the calculations, proofs and experimental procedures can be deposited as supplementary material (if unable to be published in a normal way).

Scientific Board

Editorial Team

Editor in Chief

Assoc. Professor. Dr Norma Binti Alias Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia Skudai, Johor, Malaysia

Editorial Board

Kifilideen L. Osanyinpeju. Agricultural and Bio-Resources Engineering, Federal University of Abeokuta, Ogun State, Nigeria.

Yongjin LI

Department of Mathematics, Sun Yat-sen University, Guangzhou, 510275, China

Arif Mehmood Khattak

Department of Mathematics and Statistics Riphah International University, Sector I-14 Islamabad, Pakistan

Mai Zurwatul Ahlam

Department of Mathematics, Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia

Attaullah

Department of Mathematics & Statistics, Bacha Khan University Charsadda 24461, KPK, Pakistan

Mehtab Khan

Department of Mathematics, Bacha Khan University, Charsadda, Pakistan

Ihtisham Ul Haq

Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan

Hassan Khan

Department of Mathematics, Abdul Wali khan University, Mardan 23200, Pakistan

Editorial Board

Neel Kanth

Department of Mathematics JayPee University of Information Technology Waknaghat, Solan

Hafiz Ullah

COMSATS University Islamabad, Park road, Chak Shahzad, Islamabad 45550, Pakistan

Oluwafemi, Temidayo J

Department of General Studies, Newgate College of Health Technology, Minna, Niger State, Nigeria.

Bawar Mohammed Faraj

Department Computer Science, College of Science, University of Halabja

Shorouk M. Al-Issa

Department of Mathematics, Faculty of Arts and Sciences, The International University of Beirut, Beirut 1107, Lebanon

Md. Yasin Ali

Department of Electrical and Electronic Engineering University of Information Technology & Sciences Dhaka, Bangladesh

Nazrul Islam

Department of Mathematics Jashore University of Science and Technology

Nisar Ahmad

Department of Mathematics, Kohat University of Science and Technology (KUST), Kohat KPK, Pakistan

Muhammad Sinan

Department of Mathematics and Statistics, University of Swat

Sartaj Ali

Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan

Muhammad Usman Department, of Basic Science & Islamiyat UET, Peshawar, Pakistan

Matrix Science Mathematic (MSMK)
Mary Amoako
ence & Islamiyat UET,
Registry, Kumasi Technical University, Kumasi, Ghana