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modeling uncertainty when it was introduced by Molodtsov in 1999. It may be applied in a variety of contexts,
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both theoretical and practical. This paper introduces a new soft set operation called the "soft binary piecewise
star operation." Its basic algebraic characteristics are thoroughly examined. Moreover, this operation's
distributions over various soft set operations are obtained. We prove that the soft binary piecewise star

operation is a commutative semigroup under certain conditions and is also a right-left system. Furthermore,
we show that the collection of soft sets over the universe, along with the soft binary piecewise star operation
and some other types of soft sets, form many important algebraic structures, such as semirings and near-
semirings, by considering the algebraic properties of the operation and its distribution rules together.
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1. INTRODUCTION

Fuzzy set theory, interval mathematics, and probability theory are a few
of the theories that may be used to explain uncertainty; yet, each of these
theories has disadvantages of its own. Soft Set Theory is a unique
approach to describing uncertainty and using it to solve issues related to
uncertainty which was first described by (Molodtsov, 1999). This idea has
been successfully applied to several mathematical fields since it was first
introduced. Measurement theory, game theory, probability theory,
Riemann integration, and Perron integration are a few of these disciplines
that have been researched.

Soft set operations were first studied by (Maji et al, 2003 and Pei and
Miao, 2005). A number of soft set operations, including restricted and
extended soft set operations were proposed by (Ali et al., 2009). In their
work on soft sets, Sezgin and Atagiin developed and gave the
characteristics of the restricted symmetric difference of soft set.
Additionally, they covered the fundamentals of soft set operations and
gave examples of how they connect to each other (Sezgin and Atagiin,
2011), Athorough examination of the algebraic structures of soft sets was
carried out by (Ali et al., 2011). A number of academics were interested
in soft set operations and studied the subject matter in depth (Yang, 2008;
Neog and Sut, 2011, Fu, 2011; Ge and Yang, 2011; Singh and Onyeozili,
2012a; Singh and Onyeozili, 2012b; Singh and Onyeozili, 2012c; Singh and
Onyeozili, 2012d; Ping, and Qiaoyan, 2013; Jayanta, 2014; Onyeozili and
Gwary, 2014; Husain and Shamsham, 2018).

The idea of the soft binary piecewise difference operation in soft sets was
proposed by (Eren and Calisici, 2019). Also, Sezgin and Calisic carried out
a thorough analysis of the soft binary piecewise difference operation
(Sezgin and Calisici, 2024). While the extended difference of soft sets was
introduced by Sezgin et al, extended symmetric difference of soft sets was
defined and investigated by Stojanovic (Sezgin et al., 2019; Stojanovic,
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2021).

Two new complement operations were introduced to the literature by
(Cagman, 2021). A group of researchers worked on these and many other
new binary set operations were introduced by (Sezgin et al,, 2023a). A
significant number of additional restricted and extended soft set
operations were proposed by Aybek via applying these new binary
operations to soft sets (Aybek, 2024). The complementary extended soft
set operations were the focus of their continuous attempt to modify the
structure of extended operations in soft sets by (Akbulut, 2024; Demirci,
2024; Sarialioglu, 2024). The complementary soft binary piecewise
operations were also examined by notably altering the form of the soft
binary piecewise operation in soft sets by (Sezgin and Atagiin, 2023;
Sezgin and Aybek, 2023; Sezgin et al. 2023b; Sezgin et al. 2023c; Sezgin
and Cagman, 2024; Sezgin and Demirci, 2023; Sezgin and Sarialiogly, 202;
Sezgin and Yavuz, 2023b; Sezgin and Dagtoros, 2023), Two notable
studies on soft binary piecewise operations were proposed by (Sezgin and
Yavuz, 2023a; Yavuz, 2024). Studies concerning different types of soft
equity are also crucial for the literature of soft sets (Jun and Yang, 2011;
Liu et al, 2012; Feng and Li, 2013; Abbas et al., 2014; Abbas et al,, 2017;
Al-Shami, 2019; Alshasi and El-Shafei, 2020; Ali et al., 2020)

Algebraic structures, also referred to as mathematical systems or
structures, have long piqued the curiosity of mathematicians. Sorting
algebraic structures according to the properties of the operation given on
a set is one of the most important algebraic mathematics problems. One
of the best-known ideas in binary algebraic structures is the extension of
rings: near-rings, semirings, and semifields. Scholars have been eager to
learn more about this topic for a very long time. The first definition of the
word semirings was provided by (Vandiver, 1934). Semirings have been
the focus of extensive studies in more recent times, particularly
concerning their applications (Vandiver, 1934). Semirings are important
in geometry, but they are also crucial in pure mathematics and are needed
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to solve many problems in applied mathematics and the information
sciences (Goodearl, 1979; Petrich, 1973; Reutenauer and Straubing, 1984;
Glazek, 2002; Kolokoltsov and Maslov; 1997; Hopcroft and Ullman, 1979;
Beasley and Pullman, 1988, Beasley and Pullman, 1992; Ghosh, 1996;
Wechler, 1978; Golan, 1999; Hebisch, and Weinert, 1998, Mordeson and
Malik, 2002). To sum up, semirings are important in pure mathematics as
well as geometry. Hoorn and Rootselaar discussed the near-semiring
(Hoorn and Rootselaar, 1967). More general than a near-ring or semiring,
a seminearring is an algebraic structure in mathematics also referred to
as a near-semiring. Finding near-semirings from functions on monoids is
a simple task. Concepts of soft set operations for soft sets are
fundamental, much as operations from classical set theory are to classical
algebra. Thus, thinking about the algebraic structure of soft sets in terms
of this point of view might help us better comprehend it.

We want to make a major contribution to the field of soft set theory by
introducing the "soft binary piecewise star operation" and closely
examining the algebraic structures associated with it as well as other soft
set operations in the collection of soft sets over the universe. The
structure of this study is as follows: The fundamental concepts of soft sets
and various algebraic structures are reviewed in Section 2. In the third
section, the algebraic characteristics of the newly proposed soft set
operation are analyzed in detail. These characteristics enable us to
demonstrate that, in addition to being a right-left system with the right
identity empty soft set under specific circumstances, the soft binary
piecewise star operation is also a commutative semigroup. Section 4 looks
at how the soft binary piecewise star operation is distributed over several
soft set operations, such as restricted, extended, and soft binary piecewise
operations. Considering the distribution laws and the algebraic
properties of the soft set operations, an extensive analysis of the algebraic
structures formed by the set of soft sets with these operations is
presented. It is demonstrated that a variety of significant algebraic
structures, such as semirings and near-semirings, are constructed from
the collection of soft sets over the universe using the soft binary piecewise
star operation and other forms of soft sets. Section 5 discusses the
significance of the study's results and how they could apply to the subject.

2. PRELIMINARIES

Several algebraic structures and several fundamental ideas in soft set
theory are provided in this section.

Definition 2.1. Let U be the universal set, E be the parameter set, P(U) be
the power set of U, and let K € E. A pair (F, K) is called a soft set on U. Here,
F is a function given by F: K — P(U) (Molodtsov, 1999).

The set of all soft sets over U is denoted by Sg(U). Let K be a fixed subset
of E, then the set of all soft sets over U with the fixed parameter set K is
denoted by Sg(U). In other words, in the collection Sg(U), only soft sets
with the parameter set K are included, while in the collection Sg(U), soft
sets over U with any parameter set can be included. Clearly, the set Sg(U)
is a subset of the set Sg(U).

Definition 2.2. Let (F,K) be a soft set over U. If F(e)=0 for all e€K, then the
soft set (F,K) is called a null soft set with respect to K, denoted by @.
Similarly, let (F,E) be a soft set over U. If F(e)=0 for all e€E, then the soft
set (F,E) is called a null soft set with respect to E, denoted by @ (Ali etal.,
2009).

It is known that a function F: @ — K, where the domain is the empty set,
is referred to as the empty function. Since the soft set is also a function, it
is evident that by taking the domain as @, a soft set can be defined as F: @
— P(U), where U is a universal set. Such a soft set is called an empty soft
set and is denoted as @y. Thus, @, is the only soft set with an empty
parameter set (Ali etal, 2011).

Definition 2.3. Let (F,K) be a soft set over U. If F(e)=U for all e€K, then
the soft set (F,K) is called an absolute soft set with respect to K, denoted
by Uk. Similarly, let (F,E) be a soft set over U. If F(e)=U for all e€E, then
the soft set (F,E) is called an absolute soft set with respect to E, denoted
by Ug (Ali etal., 2009).

Definition 2.4. Let (F,K) and (G,Y) be soft sets over U. If KEY and for all
e€K, F(e) =G(e), then (FK) is said to be a soft subset of (G,Y), denoted by
(F,K)E(G,Y) . If (G,Y) is a soft subset of (F,K), then (F,K) is said to be a soft
superset of (G,Y), denoted by (F,K)3(G,Y). If (F.K)E(G,Y) and (G,Y)E(F,K),
then (F,K) and (G,Y) are called soft equal sets (Pei and Miao, 2005).

Definition 2.5. Let (F,K) be a soft set over U. The soft complement of (F,K),
denoted by (F,K)r =(Fr,K), is defined as follows: for all e€K, Fr(e)=U-F(e)
(Ali et al,, 2009).

Two new complements as a novel concept in set theory were introduced
(Cagman, 2021). For ease of representation, we denote these binary
operations as + and 6, respectively. For two sets T and Y, these binary
operations are defined as T+Y=T'UY and TBY=T'NY’ (Sezgin et al., 2023a)
investigated the relationship between these two operations and also
introduced three new binary operations, examining their relationships
with each other. For two sets T and Y, these new operations are defined
as T*Y=K'UY’, TyY=T'nY, TAY=TUY’ (Sezgin et al,, 2023a).

As a summary for soft set operations, we can categorize all types of soft
set operations as follows: Let "®" be used to represent the set operations
(i.e, here @ canbe N, U\, A, +,6,* 1,y), then all types of soft set operations
are defined as follows:

Definition 2.6. Let (F, K) and (G, Y) be two soft sets over U. The restricted
® operation of (F, K) and (G, Y) is the soft set (H, P), denoted by (F,
K) @« (G, Y)= (H, P), where P = KN Y# @and for all e € P, H(e) =
F(e)®G(e). Here, if P = KN 'Y = @, then (F, K) ®x(G, Y)= @y (Ali et al,
2009; Sezgin and Atagiin, 2011; Ali et al,, 2011; Aybek, 2024).

Definition 2.7. Let (F, K) and (G, Y) be two soft sets over U. The extended
® operation (F, K) and (G,Y) is the soft set (H,P), denoted by (F, K) ®.(G,
Y) = (H, P), where P=KU Y, and foralle € P,

F(e), eEK—-Y
H(e) = Gle), eEY—K
Fle) ® G(e), eeKnY

(Maji et al., 2003; Ali et al,, 2009; Sezgin et al,, 2019; Stojanovic, 2021;
Aybek, 2024)

Definition 2.8. Let (F, K) and (G, Y) be two soft sets over U. The
complementary extended @ operation (F, K) and (G,Y) is the soft set
*
(H,P), denoted by (F, K) ® (G,Y)=(H,P),whereP=KUY,andforalle €
€
P,

F'(e), eEK—Y
H(e) = G'(e), eEY—K
F(e) ®G(e), eeKNnY

(Akbulut, 2024; Demirci, 2024; Sarialioglu, 2024).

Definition 2.9. Let (F,K) and (GY) be two soft sets on U. The
complementary soft binary piecewise @ operation of (F,K) and (G,Y) is
*

the soft set (H,K), denoted by (F,K) ~ (G,Y) = (H,K), where for alle € K,
®

B F'(e), eEK-—Y
H(e) = jlF(e) ®@G(e), e€KNY

(Sezgin and Atagiin, 2023; Sezgin and Aybek, 2023; Sezgin et al,, 2023b;
Sezgin et al,, 2023c; Sezgin and Cagman, 2024; Sezgin and Demirci, 2023;
Sezgin and Sarialioglu, 2024; Sezgin and Yavuz, 2023b; Sezgin and
Dagtoros, 2023)

Definition 2.10. Let (F,K) and (G,Y) be two soft sets on U. The soft binary
piecewise @ operation of (F,K) and (G,Y) is the soft set (H,K), denoted by

(F, K)®(G, Y) = (H,K), where for all e € K,

_ F(e), eEK-Y
H(e) = {F(e) ®G(e), e€EKNY

(Eren and Calisici, 2019; Sezgin and Calisici, 2024; Yavuz, 2024; Sezgin
and Yavuz, 2023a).

For more about soft sets, we refer to the following (Cagman et al,, 2012;
Sezgin, 2016; Tuncay and Sezgin, 2016; Sezgin and Orbay, 2022;
Mahmood et al,, 2018; Jana et al., 2019; Mustuoglu et al., 2016; Sezer etal.,
2015; Sezer, 2014; Ozlii and Sezgin, 2020; Atagilin and Sezgin, 2018,
Sezgin, 2018; Iftikhar and Mahmood, 2018; Sezgin et al.,, 2017; Mahmood
etal, 2015; Sezgin et al., 2022).
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Definition 2.11. Let (S, ) be an algebraic structure. An element s €S is
called idempotent, if s2=s, for all s€S. The algebraic structure (S,*) is said
to be idempotent if all the elements of S are idempotent. An idempotent
semigroup is called a band; an idempotent and commutative semigroup
is called a semilattice; and an idempotent and commutative monoid is
called a bounded semilattice (Clifford, 1954).

In a monoid, although the identity element is unique, a
semigroup/groupoid can have one or more left identities; however, if it
has more than one left identity, it does not have a right identity element,
thus it does not have an identity element. Similarly, a
semigroup/groupoid can have one or more right identities; however, if it
has more than one right identity, it does not have a left identity element,
thus it does not have an identity element (Kilp et al., 2001). Similarly, in a
group, although each element has a unique inverse, in a monoid, an
element can have one or more left inverses; however, if an element has
more than one left inverse, it does not have a right inverse, thus it does
not have an inverse. Similarly, in a monoid, an element can have one or
more right inverses; however, if an element has more than one right
inverse, it does not have a left inverse, thus it does not have an inverse
(Kilp et al.,, 2001).

Definition 2.12. If a semigroup (S,*) has a left identity and every element
has a right inverse, then the semigroup is called a left-right system and if
the semigroup has a right identity and every element has a left inverse,
then the semigroup is called a right-left system. The difference between
the left-right system and the group is that a group has a left (resp., a right)
identity, and every element has a left (resp., a right) inverse (Maan, 1994).

Definition 2.13. Let S be a non-empty set, and let "+" and "*" be two
binary operations defined on S. If the algebraic structure (S, +, x) satisfies
the following properties, then it is called a semiring:

i. (S, +)isasemigroup.
ii. (S, %) is a semigroup,
iii. Forallx,y,z €S, xx(y + z) = xxy + x*xz and (X +y) *Z = X*Z + y*z

If x+y=y+z forall x,y€S, then Sis called an additive commutative semiring.
If for all x,y€S, xxy=y*x, then S is called a multiplicative commutative
semiring. If there exists an element 1€S such that xx1=1xx=x for all x€S
(multiplicative identity), then S is called semiring with unity. If there
exists 0€S such that for all x€S, 0xx=xx0=0 and 0+x=x+0=x, then 0 is
called the zero of S. A semiring with commutative addition, and a zero
element, is called a hemiring (Vandiver, 1934).

Definition 2.14. Let S be a non-empty set, and let "+" and "x" be two
binary operations defined on S. If the algebraic structure (S, +, *) satisfies
the following properties, then it is called a near-semiring (or
seminearring):

i. (S,+) is a semigroup.
ii. (S, *)isasemigroup.
iii. Forallx,y,z€ S, (x+y) *z = xxz+y*z (right distributivity)

If the additive zero element 0 of S (that is, for all x€S, 0+x=0+x=x) satisfies
that for all x€S, 0xx=0 (left absorbing element), then (S, +, %) is called a
(right) near-semiring with zero. If (S, +, *) additionally satisfies xx0=0 for
all X€S (right absorbing element), then it is called a zero symmetric near-
semiring (Hoorn and Rootselaar, 1967).For possible applications of
graphs and network research concerning soft sets, we refer to ( Pantetal,,
2024).

3. SOFT BINARY PIECEWISE STAR OPERATION

A novel soft set operation called the soft binary piecewise star operation
is presented in this section. It also looks at the distribution rules and
algebraic structures of the operation form in Sg(U), presents an example
of the operation, and investigates its whole algebraic properties and
relationships with other soft set operations.

Definition 3.1. Let (F,K) and (G, Y) be soft sets over U. The soft binary
piecewise star of (F,K) and (G,Y) is the soft set (H,K), denoted

by, (F, K):(G. Y) = (H,K), where for all €K,

F(5), SeK-Y

F(5)UG(5),  seKnY

Example 3.2. Let E={e,,e,,e;,e,} be the parameter set, K={e,, e,} and
Y={e,, e3, e,} be the subsets of E, and U={hy,h,,h;,h,hs, hs} be the initial
universe set. Assume that (F,K) and (G,Y) are the soft sets over U defined
as following:

(FK)={( ey, {hz, hyhe), (e4.{hy,hzhs5, he})}
(GY)={(ez{hy ,hs}), (es,{hz,h3,hy, hs}),(e4{hy, hshs})}
Let (FK) , (G,Y)=(HK), where for all 5€K,

F(5), beK-Y
H(5)=

F(B)UG(S),  deKnY
Here since K={e;,e,} and K — Y={e,}, forall 6 € K — Y={e,}, H()=F(5) and
so H(e,)=F(e;)={h,, hyhe}; for all &eKnY={e,},H(5)=F(5) UG'(s),
H(e,)=F'(e;) UG (e)={hs,h,}U{hy,hy, he}=(hy, hy, hy, he}}. Thus,
(F,K):(G,YF{( ey {hz ,hyhe}), (e, {hy hs, hy he})}

Theorem 3.3. Algebraic Properties of the Operation

1) The set Sg(U) is closed under : That is, when (F,K) and (G,Y)

are two soft sets over U, then so is (F,K) : (GY).
Proof: It is clear that : is a binary operation in Sg(U). That is,
¢ Se(U)x S(U)~ Se(U)
((FK), (GY) > (FK) | (G,Y) = (HK)
Hence, the set Sg(U) is closed under : Similarly,
= Sk(U)x Sk(U)~ Sk(U)
(FK), (GK) = (FK) | (GK) =(HK)

That s, let K be a fixed subset of the set E, and (F,K) and (G,K) be elements
of Sx(U). Then so is (F,K) , (G,K). Namely, Sx(U) is closed under .

2) If KNY'ND=KNYND=, then [(F,K) . (GY)], (HD)=(FK)

[(GY), (HD).

Proof: First, consider the left-hand side (LHS). Let (F, K):(G,Y)=(T,K),
where for all €K,

F(5), SeK-Y
T(8)=
F(8)UG (), seKnY

Let (T,K) , (H,D)=(MK), where for all €K,

T(®), 5eK-D
M(&)=—
T'(5)UH’'(d), 5eKND
Thus, -
—F(b), 5e(K-Y)-D=KnY’'nD’

M(d)= | F(5)UG'(5),

—

5e(KNY)-D=KnYND’
F(5)UH’'(5), 5e(K-Y)ND=KnY’nD

[F(8)NG(8)JUH'(5),  se(KNY)ND=KNYND
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Let (G,Y), (H,D)=(KY), where for all €Y,
[G(s), 5€Y-D
K()=_
G'(5)UH'(5), 5eYnD

Let (F, K) | (KY)=(S K), where for all 5eK,
(Fo), 5eK-Y

S(8)=_

F(6)UK(d),  seKnY

Thus,

F(5), SeK-Y
S(5)= F(5)UG'(5), 5eKn(Y-D)=KnYnD’
F(5)U[G(5)NH(3)], 5eKN(YND)=KNYND

Considering K-Y in the S function, since K-Y=KNY’", if 5€Y’, then €D-Y or
5€(YUD)'. Thus, if 5€K-Y, then 5eKNY’ND’ or 56KNY’ND. Thus, M=S, where
KNY’nD=KNYND=@. That is, under suitable conditions, the operation : is
associative Sg(U).

3) [(F.K) | (GK)], (HK) # (FK) | [(GK) , (HK)].

Proof: Consider first the LHS and let (F, K):(G,K):(T,K), where for all
5€K;

F(5), 5eK-K=0
T(%)=

F(5)uG'(5), &eKNK=K

Let (TK) , (HK)=(MK), where for all 5ek;

T(5), beK-K=0
M(5)=

T(5)UH'(3),  5eKNK=K
Thus,

T(5), 5eK-K=0
M(8)=

[F(5)NG(8)JUH'(8), ~ 5eKNK=K

Now consider the RHS. Let (G,K):(H,K):(L,K), where for all 5€K;
G(5), 5eK-K=0

L(8)=
G'(8)UH’'(3), 5eKnK=K

Let (F,K) , (LK)=(N,K), where for all 5€K;

F(8),
N(8)=

F'(5)UL'(5),
Thus,

), eK-K=0

N(8)=

F'(5)U[G(5) NH(5)], 5eKNK=K

It is seen that M#N. That is, for the soft sets whose parameter sets are the

5eK-K=0

5eKnK=K

same, the operation " is not associative.

4) (F,K) , (GY)*(G,Y), (FK).
Proof: Let (F,K)  (G,Y)=(HK), where for all 5ek;
F(5), beK-Y
H(8)=
FB)UG(S),  seKnY
Let (G,Y) , (FK)=(TY), where for all 5Y;
G(3), 5eY-K
T(5)=
G(®)UF(s),  seYnK

Here, while the parameter set of the soft set of the LHS is K; the parameter
set of the soft set of the RHS is Y. Thus, by the definition of soft equality;

(FK) , (GV)GY) |, (FK).

But it is obvious that (F,K) :(G,K):(G,K):(F,K). That is, while the

operation , is not commutative in Sg(U), the operation _ is commutative
in the set Sk(U), where K<E is a fixed parameter set. Namely,

(F.K) , (GK)=(GK) , (FK).

5) (F,K)  (FK)=(F, K)".

Proof: Let (F,K), (F,K)=(HXK), where for all 5eK;
F(5), beK-K=0

H(s)=
F'(5)UF'(5), 5eKNK=K

where for all 5eK; H(5)=F (5)UF'(5)=F'(5), thus (H,K)=(F, K)". That is, the

operation _ is notidempotent in Sg(U).

Theorem 3.3.1. By Theorem 3.3 (1), (2) and (4), (SE(U),:) is a

commutative but not idempotent semigroup, under the condition
KNY’NnD=KNYND=@, where (F,K), (G,Y) and (H,D) are elements of Sg(U).

By Theorem 3.3 (3) since : is not associative in Sg(U), where K€ E is a

fixed parameter set, (Sg(U),,) is not a semigrup; however, it is obvious
that it is a commutative groupoid.

6) (FK, 0c=0x ,(F.K) = Ug

Proof: Let @y=(SK), where for all 5€K;S(5)=0. Let (F,K) , (S,K)=(HK),
where for all 5€K;

F(5), 5eK-K=0
H(®)=

F'(5)uS'(s), 5eKNK=K
Thus, H(6)=F'(6)US’(6)=F'(6)uU=U, dor all 5eK. Hence, (H,K)=Uy.
7) (F.K) , B:=Ux

Proof: Let @;=(S,E), where for all 5€E; S(5)=0. Let (F, K):(S,E):(H,K).
Thus, for all €K,

F(5), 5eK-E=0
H(b)=

F(5)US'(5), seKNE=K
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Hence,for all 5eK;H(8)=F'(6)uS’(6)=F'(56)uU=U, so (H,K)=Ug

8) (F,K) , By=(FK).

Proof:Let 8,=(S, @) and (F,K) , (S, )=(H,K). Hence, €K,
F(8), 5eK-p=K

H(5)=
F(®) US(), beKnp=0

Thus, for all 5eK; H(8)=F(5), (H,K)=(F,K). That is, @ is the right identity

element for the operation : in Sg(U).

9) 0o, (F.K) = 0.

Proof: Let @=(S,®) and (S,{Z)):(F,K)=(H,(Z)). ,@). Since @ is the only soft
set whose parameter set is the empty set, (H,0)= @y.

That is, in Sg(U), for the operation :, the left inverse of each element with
respect to the right identity element @ is the soft set @,. Moreover,
in Sg(U), the left absorbing element of the  operation is the soft set @ .

Theorem 3.3.2. From the properties of (1), (2), (8) and (9), the algebraic
structure (Sg(U), ) is a right-left system with the right identity @4, and

the left inverses of each element is @, under the condition KNnYND
=KNY’ND=@, where (F,K), (G,Y) and (H, D) are the elements of Sg(U).

10) (F,K), Ug=Uy , (F,K) = (F,K)".

Proof: Let Uy=(T K), where for all 5€K; T(5)=U. Let (F,K) :(T, K)=(H,K),
where for all 5€K;

F(5), eK-K=0
H(®)=

FGUT(3),  deKnK=K
Thus, for all 5eK;H(5)=F (5)UT’(5)=F'(5)U@=F'(5), hence (H,K)=(F, K)".
11) (F,K), Ug=(F,K)".

Proof: Let Ug=(T,E), where for all 6€E; T(5)=U. Let (F, K):(T, E)=(HK),
where for all 5K i¢in ;

F(5), 5eK-E=0
H($)=
F(&)UT'(8), 5eKNE=K
Thus, for all 5K; H(5)=F (8)UT’(5)=F'(6)U®@=F'(5). Thus, (H,K)=(F,K)".
12) (FK), (FK)"=F,K" , (F,K) = Ug.

Proof’:v Let (F,K)"'=(HK), where for all &€K; H(6)=F(5). Let
(F,K) , (H,K)=(T,K), where for all 5¢K;

F(5), 5eK-K=0
T(6)=
F'(6)UH'(3), 5eKnK=K
Thus,for all 5€K; T(&)=F'(§)UH’(5)=F'(5)UF(5)=U, hence (T,K)=Uy.

*

13) [(F,K) , (GY]=(FK) ~ (GY)
n

Proof: Let (F,K), (GY)=(HK), where for all 5eK,
F(5), 5eK-Y
H(®)=

F(5)UG(s), seKnY

Let (H, K)"'=(T,K), where for all 56€K,

F'(5), beK-Y
T(8)=
F(®)NG(),  eKnY
*
Thus, (TK)=(F.K) ~ (GY).
n
14) (F,K) ,(GK) = 0x &(F,K) = (6K = Uy.

Proof: Let (F,K) _ (G, K) = (T,K), where for all 5K,
F(5), 5eK-K=0

T(8)=
F()UG(S), seKnK=K

Since (T,K) =@, for all &eK, T(6)=@0. Thus, for all &€K,
T(6)=F(6)UG'(6)=0 < for all 5€ K, F'(6)=0 and G'(6)=0 < For all 5€K,
F(5)=U and G(5)=U &(F,K) = (G,K) = Ug.

15) O € (F,K) (G,Y) and @y € (G,Y) . (F,K).
16) (F,K),(GY) € Uy and (G,Y), (F,K) € Uy.
17) (F,K)" € (F,K) _ (GK) and (G,K)" & (F,K) . (GK).

Proof: Let (F,K) , (GK)=(H,K), where for all 5€K,

F(5), 5eK-K=0
H(8)=
F'(6)UG'(5), 5eKnK=K
Since for all 5eK, H($)=F'(6)< F'(w) U

G'(w), (F, K" € (FK) (GK). (GKF E (FK) ,(GK) can be shown
similarly.

18) If (FK)E (G, Y), then (FK) . (GY)=(F.K)"

Proof: Let [}EK)Q (G,Y). Then, K€Y and for all &e€K, F(§) <
G(w). Let (F,K) , (G,Y)=(HK), where for all 5€K,

F(5), 5eK-Y=0
H(6)=

F'(5)UG'(d), 5eKnY=K
Since for all 5eK,F(8)S G(w),

then  G'(d)S F/(8). Thus,
(FK), (GY)=(FK)-

H(5)=F (w) U G'(w)=F (w). Hence,

19) If (F,K) € (G, K), then (H,Z) , (G,K) € (H,2)  (F,K) and (G,K) , (H,K)
E (FK) , (HK).

Proof: Let (F,K)E (G,K). Then, for all §€K, F(5)< G(5), so for all € K,
G'(5)S F'(5). Let (H,Z) , (G,K) = (W,Z). Thus, for all & €7,

H(®), 5eZ-K
W(b)=
H()UG(S), seZnK
Let (H,2)  (F,K)=(L,Z), where for all & €Z,
H(5), seZ-K
L(5)=

H(5)UF'(5), 8€ZnK
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If for all &€Z-K, then W(&)=H(6)SH(6)=L(8), if for all §€ZNK, then
W(G)=H'(6)UG’ ()= H'(5)UF'(6)=L(6). Thus, (H,Z):(G, K) €
(H,Z):(F, K). Moreover, since for all 5eK, G’(6)UH’() < F'(6)UH’(5), (G,K)
“(HK) E(FK) , (HK).

20) If (HZ)  (G,K) € (HZ) , (F,K), then (F,K) € (G,K) needs not to be
true. Similarly, if (GK) , (H,K) & (FK) , (H,K), then (F,K) € (G,K) needs

not to be true. That is, the converse of Theorem 3.3. (19) is not true.

Proof: To demonstrate that the converse of Theorem 3.3. (19) is not true,
let's provide an example. Let E={e;,e,,e3.e,es} be the parameter set,
K={e,,es} and Z={e,,e;, s} be two subsets of E, U={h; ,h,, h3,h,, hs} be the
universal set. Let (F,K), (G,K) and (H,Z) be soft sets over U as follows:

(F.K)={(ey,{hz, hs}),(es,thy bz hs )} (GK)={(es,{h2}),(5,{h1,h2})))

(HZ2)={(ey, @), (e5,9), (es, {ha, hs}}-

Let (H2)(GK) = (LZ), where for all 5€ Z-K={es},
L(es)=H(es)={h,, hs}, for all §€ Z nK={e;,e;}, L(e;)=H'(e;)UG'(e,)=U,
and L(e3)=H’(e3)UG’(e3)=U. Thus,

(H,2), (G, K)={(e;,U),(e3,U),(es, (hz, hs )}

Now let (HZ),(F,K)=(WzZ), where for all &eZ-K={es},
W(es)=H(es)=th,, hs}, for all &€ Z nK={e,,e;}, W(e,)=H’(e;)UF'(e;)=U,
and W(e;)=H’(e;)UF'(e3)=U. Thus,

(H,2), (F, K)={(e1,U),(e5U),(es, {hy, hs})}.

Hence, (HZ), (G K) E(H2Z),(F,K), but (FK) € (GK) is not true.
Similarly, if (GK)  (H,K) € (FK) . (H,K), then (F,K) € (G,K) needs not
to be true can be shown by taking as (H,K)={( e1,9),(es,8)}.

21) Let (F,T) € (G, T) and (KT) € (L, T), then (GT) , (LT) E(FET) , (KT).

Proof: Let (F,T)E (G, T) and (K,T)E (L, T). Thus, for all & €T, F(5)S G(w)
and K(8)< L(w). Hence, for all & €T, G'(8)< F'(5) and L'(5)C K'(5). Let
(GT),(LT)=(MT). Thus, for all €T, M()=G(5)UL'(5). Let
(F,T):(K,T)z(N,T). Thus, for all & €T, N(8)=F'(6)UK’(8). Since for all & €T,
G'(5)C F'(5) ve L'(5) K'(w), M(5)=G'(5)UL'(5)SF'(5)UK'(5)=N(5). Thus,
(GT) L (LT) EFT) (KT

22) (F,K)o(G,K) E (F,K), (GK).

Proof: Let (F, K)E(G, K) = (T,K). Thus, for all €K,
;(6), 5eK-K=0

T(5)=
F(5)NG'(5), seKNK=K

Let (F,K) . (G,K) = (W,K). Thus, for all 5€K,
(F(s), 5eK-K=0

W(s)=_

F(5)UG'(5), 5eKNK=K

Since for all 5eK, T(6)=F(6)NG'(6)SF (6)UG’(6)=W(5). Hence,
(F.K)g(GK) € (FK), (G K.

4. DISTRIBUTION RULES

This section provides a detailed examination of the distribution of the soft
binary piecewise star operation over various soft set operations, leading
to the discovery of several intriguing algebraic structures formed in the
collection of soft sets together with the soft binary piecewise star
operation and other various types of soft set operations.

Proposition 4.1. Let (F,K), (G,Y), and (H,D) be soft sets over U. Then, the
soft binary piecewise star operation distributes over restricted
operations as follows, under KN YN D = @.

1[(F.K) Ug (GY)], (HD)=[(F,K), (HD)UR[(G,Y) , (HD)].

Proof: First consider the LHS. Let (F,K)LJR(G,Y]:(M,KOY), where for all
5eKnY, M(8)=F(5)UG(8). Let (M,KNY) , (H,D)=(N,KNY), where for all
5eKny,

’_M(b), 5€(KNY)-D

N(&)=—
M’'(6)UH’(6), &€(KnY)ND
Thus,
F(5)UG(s), se(KnY)-D=KnYNnD’
N(®)=_

[F(5)NG(6)JUH'(S), se(KNY)ND

Now consider the RHS, ie, [(F,K)(HD)JUg[(GY) (HD)]. Let
(F,K) , (H,D)=(V,K), where for all 5€K,

F(5), 5eK-D
V(5)=

F(5)UH'(5),  5eKnD
Let (G,Y), (H,D)=(W,Y), where for all 5€Y,

G(), 5€Y-D
W(5)=

G'(3)UH'(3),  5eYND
Let (V,K)Ug (W,Y)=(T,KNY), where for all 5eKnY, T(5)=V(5) UW(5),
F(8)UG(5), se(K-D)N(Y-D)=KnYND’
T(5)=| F(5)U[G (5)UH'(3)], 5e(K-D)N(YND)=0
h [F'(5)UH'(8)]UG(5), se(KND)N(Y-D)=

[F(BJUH'(8) JV[G (8)UH'(8)],

5e(KND)N(YND)=KNYND

Thus,

F(5)UG(5), seKnYND’

T(5)=
[F'(5)UH'(8) JU[G'(6)UH'(8)], 5€KNYND

Hence, N=T, where KnYND = @.
2)[(F.K) Ng (GY)], (HD)=[(F,K) , (HD)]NR[(G,Y), (HD)].

Corollary 4.1.1. (SE(U),UR,:] is an additive commutative and additive

idempotent (right) near-semiring without zero and unity under certain
conditions.

Proof: (Sg(U),Ug) is a commutative, idempotent monoid with identity
element @, that is, a bounded semilattice (hence a semigroup) (Ali et al.,

2011). By Theorem 3.3.1, (SE(U),:] is a non-commutative and not

idempotent semigroup under the condition TNZ'NM = TNZNM =@, where
(F,T), (GZ) and (H,M) are soft sets over U. Besides, by Proposition 4.1. (1),

, distributes over Ng from RHS under the condition TN Z N M = @. Thus,
(SE(U),UR,:) is an additive commutative and additive idempotent (right)
near-semiring without zero and unity under certain conditions.

Corollary 4.1.2. (SE(U),nR,:) is an additive commutative and additive

idempotent (right) near-semiring without zero and unity under certain
conditions.

Proof: (Sg(U),ng) is a commutative, idempotent monoid with identity
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element Ug, that is, a bounded semilattice (hence a semigroup) (Ali et al.,
2011). By Theorem 3.3.1, (Sg(U),,) is a non-commutative and not

idempotent semigroup under the condition TNZ'NM = TNZNM =@, where
(F,T), (GZ) and (H,M) are soft sets over U. Besides, by Proposition 4.1. (2),

" distributes over Ng from RHS under the condition TN Z N M = @. Thus,

(Sg (U),OR,:) is an additive commutative and additive idempotent (right)
near-semiring without zero and unity under certain conditions.

Proposition 4.2. Let (F,K), (GY), and (H,D) be soft sets over U. Then, the
distributions of the soft binary piecewise star operation over extended
soft set operations are as follows:

LHS Distributions: The followings hold, where KNn(YAD)= KNYND=0.

1) (F,K), [(GY)U(HD)I=[(FK) | (GY)] U [(FK) , (H,D)].

Proof: First, consider the LHS. Let (G,Y) U(H,D)=(M,YUD), where for all
5eYUD,

G(5), seY-D
M(5)= | H(s), eD-Y
G(5)UH(5), &€YND

Let (F, K)  (M,YUD)=(N,K), where for all €K,

[F(s), 5eK-(YUD)
N(®)=
F(5)uM’(s), &€KNn(YUD)
Thus, —
F(%), 5eK-(YuD)=KnY’'nD’

N@)= | F(5)UG(d), seKN(Y-D)=KNYND’

1 PR ), 5eKN(D-Y)=KNY'nD

F)U[(G(®)NH'(B)],  8eKNYND=KNYND

Now co_nsider the RHS. Let (F, K): (G, Y)=(V,K), where for all €K,
F(5), SeK-Y

V(5)=-
F'(6)UG'(8), 5eKny

Let (F,K) , (H,D)=(W,K), where for all 5€K,
[ F(5), seK-D

W(5)=

F(5)UH’(5), 5eKND

Let (V,K) U¢(W,K)=(T,K), where for all €K,

V(5), eK-K=9
T(8)= | W(5), 5eK-K=9
V() NW(), 5eKNK=K
Thus,
[F(5) UF(s), se(K-Y)N(K-D)= Kny'nD’

F(8) U [F'(5)UH'(8)], se(K-Y)N(KND)=KNY’nD

T(8)=| [F(8)UG'(5)]UF(5), 5e(KNY)N(K-D)= KNYND’

[F(5)UG'(5)JU[F(5)UH'(5)],  se(KNY)N(KND)=KNYND

Thus, L
(F(®), 5e(K-Y)n(K-D)= KnY'nD’
U 5€(K-Y)n(KND)=KNY’'nD
T@)=| U se(KNY)N(K-D)= KNYnD’

F(5)UG (5)UH'(5),

se(KNY)N(KND)=KNYND

N=T, where KNnY'nD=KNYND’=KNYND=@. It is obvious that the condition
KNY’ND=KNYND’=@ is equal to the condition KN(YAD)=0.

2) (F, K [(GY)N(HD)I=[(FK) | (GY)] N, [(FK) , (H D).
RHS Distributions: The followings hold where KnYND=0.
1) [(F.X) n(GY)], (HD)=[(FK) , (HD)IN[(GY) , (HD)].

Proof: First consider the LHS. Let (F, K) N¢(G,Y)=(M,KUY), where for all
seKuy

FF(b), S5eK-Y
M(d)=— G(9), 5eY-K
F(5)NG(s), s5eKnY

Let (M,KUY)  (H,D)=(N,KUY), where for all 5eKUY,

M(5), 5e(KUY)-D
N(&)="]
M'(5)UH'(8), €(KUY)ND
Thus, :
F(5), se(K-Y)-D=KNY'nD’
G(5), 5e(Y-K)-D=K'nYnD’

N@)= | F)NG(5), 5e(KNY)-D=KnYND’

F'(5)UH’(5), se(K-Y)ND=KNY'nD
G'(5)UH'(5), se(Y-K)nD=K'nYND

5e(KNY)ND=KNYND

[ F'(5) UG'(5)] UH'(5),

Now consider the RHS, that is, [(F,K),(HD)IN.[(GY),(HD)]. Let
(FK), (H,D)=(V,K), where for all 5€K,

F(5), 5eK-D
V()=
F(5)UH'(5), 5eKnD
Let (GY) , (H,D)=(W,Y), where for all 5€Y,
G(5), 5€Y-D
W(s)=
G(B)UH'(),  seYND
Let (V,K) N, (W,Y)=(T, KUY), where for all 5eKUY,
V(5), SeK-Y
T(5)=- W(b), seY-K

V()NW(),  seKnY

Thus,
F(), 5e(K-D)-Y=KnY’'nD’
F'(5)UH’(5), 5e(KND)-Y=KNY’'ND
G(5), se(Y-D)-K=K'nYnD’

T(®)=| G(B)UH'(3), 5e(YnD)-K=K'nYND

F(5)NG(s), 5e(K-D)N(Y-D)=KnYND’
F(5) N [G'(5)UH'(8)], se(K-D)N(YND)=0
[F(8)UH'(8)]NG(3), 5e(KND)N(Y-D)=0

[F(5)UH'(8)]N[G'()UH’(8)], 8e(KND)N(YND)=KNYND

—
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Thus, _
F(5), s5eKnY'nD’
F'(8)UH’(8), 5eKNY’nD
_ G(3), seK'nYnD’
T(3)=| G'(5)UH'(s), seK'nYND
F(8)NG(3), seKnYnD’

[F(5)UH'(8)]N[G' (S)UH'(5)], seKNYND

Thus, N=Y, where KNYND=@.

2) [(FK) U, (GY)], (HD)=[(FK) | (HD)]U[(G.Y) | (HD)].
3) [(FK) \e (GY)], (HD)=[(FK) , (HD)]\c[(G,Y) | (H,D)].
4) [(FK) A.(GY)], (HD)=[(FK), (HD)]A.[(G,Y) , (HD)].
5) [(FK) +:(GY)] , (D)=[(FK), (HD)]+[(G.Y) (H,D)].
6) [(F.X) ve(GY)], (H.D)=[(FK), (HD)]y[(GY) , (HD)].
7) [(FK) #(GY)] , (HD)=[(FK) , (H.D)]%[(G,Y) , (H,D)].
8) [(F.K) 6.(GY)], (HD)=[(FK), (H,D)16[(G,Y) , (HD)].

Corollary 4.2.1. (Sg (U],US,:) and (Sg (U),r\g,:) are additive commutative

and additive idempotent (right) near-semirings with zero but without
unity and without zero symmetric property under certain conditions.

Furthermore, (Sg(U)\e,), (Se(U)As,), Se(W+e,), (Se(U)ve )
Se(WAe ), Se(U)*e, ), (Se(U).8, ) are additive commutative, not

idempotent (right) near-semirings with zero but without unity and zero
symmetric property under certain conditions.

Proof: Ali et al. [6] showed that (Sg(U), U) is a commutative, idempotent
monoid with identity element @, , that is, a bounded semilattice (hence a

semigroup). By Theorem 3.3.1, (Sg (U],:) is a non-commutative and not

idempotent semigroup under the condition TNZ'NM = TNZNM =@, where
(F,T), (GZ) and (H,M) are soft sets over U. Besides, by Theorem 3.3 (9),

%:(F, T)=@y, that is @ is the left absorbing element for _ in Sg(U),

furthermore by Proposition 4.2, : distributes over U, from RHS under

*

the condition TNZNM=@. Thus, (Sg(U), UE,;) is an additive commutative
and additive idempotent (right) near-semiring with zero but without
unity under certain conditions. Moreover, since (F, K)*(bo * Do,
(Sg (U],UE,:) is a (right) near-semiring without zero symettric property.
Similarly, (Sg(U), Ng ,g) is an additive commutative and additive
idempotent (right) near-semiring with zero, but without unity under
certain conditions. Furthermore, (Sg(U)\¢, ), (Se(V).A¢, ), (Se(U).+e, ),
GeUye ) Ce(WAe )]s SeU)*e ), (Se(U)B,,,) are all additive
commutative not idempotent (right) near-semirings with zero, but
without unity, and zero symmetric property under certain conditions.
Here, note that Aybek (2024) showed that the first operation is

associative in Sg(U) under the condition TNZNM=@ (for A, without any
conditions).

Corollary 4.2.2. (Sg(U)U,) and (Sg(U), n,,) are additive

commutative and additive idempotent semirings without zero and
without unity under certain conditions.

Proof: Ali et al. [6] showed that (Sg(U), U) is a commutative, idempotent
monoid with identity element @, that is, a bounded semilattice (hence a

semigroup). By Theorem 3.3.1, (Sg (U],:) is a non-commutative and not
idempotent semigroup under the condition TNZ'NM = TNZNM =@, where
(F,T), (G,Z) and (H,M) are soft sets over U. Besides, by Proposition 4.2, :
distributes over U, from LHS under the condition TN(ZAM)= TNZNM=0,
and : distributes over U, from RHS under the condition TNZNM=@. Thus,
(Se(W), Ug,g) is an additive commutative and additive idempotent
semiring without zero and without unity under certain conditions. One
can similarly show that (Sg(U), ng,g) is an additive commutative and

additive idempotent semiring without zero an unity under certain
conditions.

Proposition 4.3. Let (FK), (GY), (H,D) be soft sets on U. Then, the
distributions of the soft binary piecewise star operation over soft binary
piecewise operations are as follows: The followings hold where
KNYND=@.

1) [(F.K)  (GY)], (HD)=[(FK) ,(HD)] , [(GY) , (HD)].
Proof: First, consider the LHS. Let (F, K);(G,Y)=(M,K), where for all €K,
F(5), seK-Y
M(8)=
F(5)NG(5), s5eKNY
Let (M,K) , (H,D)=(N,K), where for all €K,
M(5), 5eK-D
N(s
M'(5)UH'(5),  5eKnD
Thus, —
F(5), e(K-Y)-D=KnY'nD’
N(®)= | F(®)NG(s), se(KNY)-D=KNYND’
F(5)UH'(3), 5e(K-Y)nD=KnY'nD

[F(5)UG(B)JUH'(),  se(KNY)ND=KNYND

Now consider the RHS, i.e. [(FK) , (H,D)] [(GY) , (HD)]. Let (F,K) ,
(H,D)=(V,K), where for all 6€K,

F(), 5eK-D
V(%)=

F(5)UH'(5),  eKnD
Let (G,\Q: (H,D)=(W,Y), where for all 5¢Y,
G(5), seY-D
W(5)=-
G(S)UH'(d),  seYND
Let (V,K_) ; (W,Y)=(T,K), where for all 56€K,
), seK-Y

T(5)=—

V@E)NW(S),  seknY

Thus,

(F(5), 5e(K-D)-Y=KnY’'nD’
F'(5)UH’(5), 5€(KND)-Y=KNY'nD
T(5)=| F(®)NG(), 5€(K-D)N(Y-D)=KNYND’
7 F() N [G(8)UH'(5)], 5€(K-D)N(YND)=0
[F(5)UH'(5)] NG(5), 5€(KND)N(Y-D)=0

[F(5)UH'(8)] N[G'(5)UH'(Y)],  s€(KND)N(YND)=KNYND

Thus, —
F(8), seKnY'nD’
F(5)UH'(5), s5eKNY'ND
T(6)= | F(5)NG(5), seKNYND’
[F'(8)NG'(6)]UH’ (), S€KNYND
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Thus, N=T, where KNnYND=0.
2) [(F,K) | (GY)], (HD)=[(FK) (HD)] ,[(GY) , (HD)].
3) [(F, K) \ (GY)], (HD)=[(F.K) , (HD)] \ [(G,Y) , (H.D)]

4) [(F,K)(GY)], (HD)=[(F.K) , (HD)] 5 [(G,Y) , (H.D)]

5) [(F.K) | (GY)], (HD)=[(FK) ,(HD)] ; [(GY) , (HD)].
6) [(F,K) , (GY)I, (HD)=[(FK) L (HD)] , [(G.Y) , (HD)].
7)[(F,K) , (GY)], (HD)=[(FK) [ (HD)] | [(GY) , (HD)].
8) [(F,K) o (GY)], (HD)=[(FK) , (H,D)] 4 [(G, V), (H,D)].
9) [(FK) ; (GY)], (HD)=[(FK) , (HD)] ; [(GY) , (HD)].

Corollary 4.3.1. (Sg(U),,,,) and (Sg(U),,,

non-commutative (right) near-semirings without zero and unity under
certain conditions.

- are additive idempotent,
% p

Proof: Yavuz (2024) showed that (SE[U),;) and (SE[U),G) are
idempotent, non-commutative semigroups (that is a band) under the
condition TNZ’'NM =@, where (F,T), (G,Z) and (H,M) are soft sets over U.
By Theorem 3.3.1, (SE(U],:) is a non-commutative and not idempotent
semigroup under the condition TNZ’NM = TNZNM =@, where (F,T), (G,Z)
and (H,M) are soft sets over U. Besides, by Proposition 4.3, : distributes

n
(SE(U),n,* and (SE(U],U,*) are additive idempotent non-commutative

over . and G from RHS under the condition TNZNM=@. Consequently,

(right) near-semiring without zero and unity under certain conditions.

Corollary 4.3.2. (SE(U),\,*), (SE(U),A,*), (SE(U),+,*), (SE(U),y,*),
(SE(U),:,:), (SE(U),E,:) are all not idempotent and non-commutative
(right) near-semirings without zero and without unity under the
condition TNZ'NM = TNZNM =@, where (F,T), (G,Z) and (H,M) are soft sets
over U. Here, note that Yavuz (2024) showed that the first operation is
associative in Sg(U) under the condition TNZ'NM=TNZNM=@ (for
under the condition TNZ'NM=0).

Al
5. CONCLUSION

Parametric techniques like soft sets and soft operations are useful when
dealing with uncertain data. Introducing new soft operations and figuring
out their algebraic properties and uses provides new insights into
handling parametric data problems. This work presents a unique kind of
soft set operation in this respect. By putting forward a new soft set
operation that we call the "soft binary piecewise star operation" and
closely examining the algebraic structures that underlie it as well as other
new soft set operations in the class of soft sets, we hope to make a
significant contribution to the area of soft set theory. Specifically, the
distributions of the soft binary piecewise star operation over different
kinds of soft set operations are analyzed, and the whole algebraic
properties of this novel soft set operation are investigated in detail. A
thorough examination of the algebraic structures produced by the set of
soft sets with these operations is given, taking into account the
distribution laws and the algebraic characteristics of the soft set
operations. We show that the collection of soft sets over the universe with
the soft binary piecewise star operation, and other forms of soft sets, form
different significant algebraic structures, such as semirings and near-
semirings.

* (Sg(U),,) is a noncommutative, and not idempotent semigroup under

certain conditions, moreover (Sg(U),,) is a right-left system under
certain conditions.

. (SE(U),UR,:), (SE(U),OR,:) are additive commutative and additive

idempotent (right) near-semirings without zero and unity under
certain conditions.

e (Sg(U), UE,:) and (Sg (U],ng,:) are additive commutative and additive

idempotent (right) near-semirings with zero, but without unity and
zero symmetric property under certain conditions.

e Ce(W\ey) Ge(U)Ae,) SeU)te,) CeUve, ), Ge(U)As ),
(Se(U) e, ), (Se(U).8, ) are additive commutative not idempotent

(right) near-semirings with zero but without unity and zero symmetric
property under certain conditiosn.

e (Sg(U), UE,:) and (Sg(U), ns,:) are additive commutative and additive
idempotent semirings without zero and unity under certain conditions.

. (SE(U),n,*) and (SE(U),U,*) are additive idempotent, non-
commutative (right) near-semirings without zero and unity under
certain conditions.

o Gy GeWip ) GeU) ) Ge(U)y,,) GelU),, )
(Sg (U),e,*) are all noncommutative, and not idempotent (right) near-
semirings without zero and unity under certain conditions.

We obtain a complete understanding of their use by studying new soft set
operations and the algebraic structures of soft sets. In addition to offering
novel examples of algebraic structures, this might further the fields of soft
set theory and classical algebraic literature. The goal of this study is to get
the particular algebraic structures that the soft binary piecewise star
operation forms in combination with other kinds of soft set operations in
the collection of soft sets defined over a universal set. This kind of
thorough investigation should improve our understanding of how soft
sets are used. Subsequent investigations might explore in detail more
variations of soft binary piecewise operations and their corresponding
properties and distributions.
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