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Soft set theory gained popularity as a cutting-edge approach to handling uncertainty-related problems and 
modeling uncertainty when it was introduced by Molodtsov in 1999. It may be applied in a variety of contexts, 
both theoretical and practical. This paper introduces a new soft set operation called the "soft binary piecewise 
star operation." Its basic algebraic characteristics are thoroughly examined. Moreover, this operation's 
distributions over various soft set operations are obtained. We prove that the soft binary piecewise star 
operation is a commutative semigroup under certain conditions and is also a right-left system. Furthermore, 
we show that the collection of soft sets over the universe, along with the soft binary piecewise star operation 
and some other types of soft sets, form many important algebraic structures, such as semirings and near-
semirings, by considering the algebraic properties of the operation and its distribution rules together.  
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1. INTRODUCTION 

Fuzzy set theory, interval mathematics, and probability theory are a few 
of the theories that may be used to explain uncertainty; yet, each of these 
theories has disadvantages of its own. Soft Set Theory is a unique 
approach to describing uncertainty and using it to solve issues related to 
uncertainty which was first described by (Molodtsov, 1999). This idea has 
been successfully applied to several mathematical fields since it was first 
introduced. Measurement theory, game theory, probability theory, 
Riemann integration, and Perron integration are a few of these disciplines 
that have been researched.  

Soft set operations were first studied by (Maji et al., 2003 and Pei and 
Miao, 2005). A number of soft set operations, including restricted and 
extended soft set operations were proposed by (Ali et al., 2009). In their 
work on soft sets, Sezgin and Atagün developed and gave the 
characteristics of the restricted symmetric difference of soft set. 
Additionally, they covered the fundamentals of soft set operations and 
gave examples of how they connect to each other (Sezgin and Atagün, 
2011),  A thorough examination of the algebraic structures of soft sets was 
carried out by (Ali et al. , 2011). A number of academics were interested 
in soft set operations and studied the subject matter in depth (Yang, 2008; 
Neog and Sut, 2011, Fu, 2011; Ge and Yang, 2011; Singh and Onyeozili, 
2012a; Singh and Onyeozili, 2012b; Singh and Onyeozili, 2012c; Singh and 
Onyeozili, 2012d; Ping, and Qiaoyan, 2013; Jayanta, 2014; Onyeozili and 
Gwary, 2014;  Husain and Shamsham, 2018). 

The idea of the soft binary piecewise difference operation in soft sets was 
proposed by (Eren and Çalışıcı, 2019). Also, Sezgin and Çalışıc carried out 
a thorough analysis of the soft binary piecewise difference operation 
(Sezgin and Çalışıcı, 2024). While the extended difference of soft sets was 
introduced by Sezgin et al, extended symmetric difference of soft sets was 
defined and investigated by Stojanovic (Sezgin et al., 2019; Stojanovic, 

2021). 

Two new complement operations were introduced to the literature by 
(Çağman, 2021). A group of researchers worked on these and many other 
new binary set operations were introduced by (Sezgin et al., 2023a). A 
significant number of additional restricted and extended soft set 
operations were proposed by Aybek via applying these new binary 
operations to soft sets (Aybek, 2024). The complementary extended soft 
set operations were the focus of their continuous attempt to modify the 
structure of extended operations in soft sets by (Akbulut, 2024; Demirci, 
2024; Sarıalioğlu, 2024). The complementary soft binary piecewise 
operations were also examined by notably altering the form of the soft 
binary piecewise operation in soft sets by (Sezgin and Atagün, 2023; 
Sezgin and Aybek, 2023; Sezgin et al. 2023b;  Sezgin et al. 2023c; Sezgin 
and Çagman, 2024; Sezgin and Demirci, 2023; Sezgin and Sarıalioğlu, 202; 
Sezgin and Yavuz, 2023b; Sezgin and Dagtoros, 2023), Two notable 
studies on soft binary piecewise operations were proposed by (Sezgin and 
Yavuz, 2023a; Yavuz, 2024). Studies concerning different types of soft 
equity are also crucial for the literature of soft sets (Jun and Yang, 2011; 
Liu et al., 2012; Feng and Li, 2013; Abbas et al., 2014; Abbas et al., 2017; 
Al-Shami, 2019; Alshasi and El-Shafei, 2020; Ali et al., 2020)  

Algebraic structures, also referred to as mathematical systems or 
structures, have long piqued the curiosity of mathematicians. Sorting 
algebraic structures according to the properties of the operation given on 
a set is one of the most important algebraic mathematics problems. One 
of the best-known ideas in binary algebraic structures is the extension of 
rings: near-rings, semirings, and semifields. Scholars have been eager to 
learn more about this topic for a very long time. The first definition of the 
word semirings was provided by (Vandiver, 1934). Semirings have been 
the focus of extensive studies in more recent times, particularly 
concerning their applications  (Vandiver, 1934). Semirings are important 
in geometry, but they are also crucial in pure mathematics and are needed 
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to solve many problems in applied mathematics and the information 
sciences (Goodearl, 1979; Petrich, 1973; Reutenauer and Straubing, 1984; 
Glazek, 2002; Kolokoltsov and Maslov; 1997; Hopcroft and Ullman, 1979; 
Beasley and Pullman, 1988, Beasley and Pullman, 1992; Ghosh, 1996; 
Wechler, 1978; Golan, 1999;  Hebisch, and Weinert, 1998, Mordeson and 
Malik, 2002). To sum up, semirings are important in pure mathematics as 
well as geometry. Hoorn and Rootselaar discussed the near-semiring 
(Hoorn and Rootselaar, 1967). More general than a near-ring or semiring, 
a seminearring is an algebraic structure in mathematics also referred to 
as a near-semiring. Finding near-semirings from functions on monoids is 
a simple task. Concepts of soft set operations for soft sets are 
fundamental, much as operations from classical set theory are to classical 
algebra. Thus, thinking about the algebraic structure of soft sets in terms 
of this point of view might help us better comprehend it. 

We want to make a major contribution to the field of soft set theory by 
introducing the "soft binary piecewise star operation" and closely 
examining the algebraic structures associated with it as well as other soft 
set operations in the collection of soft sets over the universe. The 
structure of this study is as follows: The fundamental concepts of soft sets 
and various algebraic structures are reviewed in Section 2. In the third 
section, the algebraic characteristics of the newly proposed soft set 
operation are analyzed in detail. These characteristics enable us to 
demonstrate that, in addition to being a right-left system with the right 
identity empty soft set under specific circumstances, the soft binary 
piecewise star operation is also a commutative semigroup. Section 4 looks 
at how the soft binary piecewise star operation is distributed over several 
soft set operations, such as restricted, extended, and soft binary piecewise 
operations. Considering the distribution laws and the algebraic 
properties of the soft set operations, an extensive analysis of the algebraic 
structures formed by the set of soft sets with these operations is 
presented. It is demonstrated that a variety of significant algebraic 
structures, such as semirings and near-semirings, are constructed from 
the collection of soft sets over the universe using the soft binary piecewise 
star operation and other forms of soft sets. Section 5 discusses the 
significance of the study's results and how they could apply to the subject.  

2. PRELIMINARIES 

Several algebraic structures and several fundamental ideas in soft set 
theory are provided in this section. 

Definition 2.1. Let U be the universal set, E be the parameter set, P(U) be 
the power set of U, and let K ⊆ E. A pair (F, K) is called a soft set on U. Here, 
F is a function given by F: K → P(U) (Molodtsov, 1999). 

The set of all soft sets over U is denoted by SE(U). Let K be a fixed subset 
of E, then the set of all soft sets over U with the fixed parameter set K is 
denoted by SK(U). In other words, in the collection SK(U), only soft sets 
with the parameter set K are included, while in the collection SE(U), soft 
sets over U with any parameter set can be included. Clearly, the set SK(U)  
is a subset of the set SE(U). 

Definition 2.2. Let (F,K) be a soft set over U. If F(e)=∅ for all e∈K, then the 
soft set (F,K) is called a null soft set with respect to K, denoted by ∅K. 
Similarly, let (F,E) be a soft set over U. If F(e)=∅ for all e∈E,  then the soft 
set (F,E) is called a null soft set with respect to E, denoted by ∅E  (Ali et al., 
2009). 

It is known that a function F: ∅ ⟶ K, where the domain is the empty set, 
is referred to as the empty function. Since the soft set is also a function, it 
is evident that by taking the domain as ∅, a soft set can be defined as F: ∅ 
⟶ P(U), where U is a universal set. Such a soft set is called an empty soft 
set and is denoted as ∅∅. Thus, ∅∅ is the only soft set with an empty 
parameter set (Ali et al., 2011). 

Definition 2.3. Let (F,K) be a soft set over U. If F(e)=U for all e∈K, then 
the soft set (F,K) is called an absolute soft set with respect to K, denoted 
by UK. Similarly, let (F,E) be a soft set over U. If F(e)=U for all e∈E,  then 
the soft set (F,E) is called an absolute soft set with respect to E, denoted 
by UE (Ali et al., 2009). 

Definition 2.4. Let (F,K) and (G,Y) be soft sets over U. If K⊆Y and for all 
e∈K, F(e) ⊆G(e), then (F,K) is said to be a soft subset of (G,Y), denoted by 
(F,K)⊆̃(G,Y) . If (G,Y) is a soft subset of (F,K), then (F,K) is said to be a soft 
superset of (G,Y), denoted by (F,K)⊇̃(G,Y). If (F,K)⊆̃(G,Y) and (G,Y)⊆̃(F,K), 
then (F,K) and (G,Y) are called soft equal sets (Pei and Miao, 2005). 

Definition 2.5. Let (F,K) be a soft set over U. The soft complement of (F,K), 
denoted by (F,K)r =(Fr,K), is defined as follows: for all e∈K, Fr(e)=U-F(e)  
(Ali et al., 2009). 

Two new complements as a novel concept in set theory were introduced 
(Çağman, 2021). For ease of representation, we denote these binary 
operations as + and θ, respectively. For two sets T and Y, these binary 
operations are defined as T+Y=T’∪Y and TθY=T’∩Y’ (Sezgin et al., 2023a) 
investigated the relationship between these two operations and also 
introduced three new binary operations, examining their relationships 
with each other. For two sets T and Y, these new operations are defined 
as T*Y=K’∪Y’, T𝛾Y= T’∩Y, T𝝺Y=T∪Y’ (Sezgin et al., 2023a). 

As a summary for soft set operations, we can categorize all types of soft 
set operations as follows: Let "⊗" be used to represent the set operations 
(i.e., here ⊗ can be ∩, ∪,\, ∆, +,θ, *, λ,γ),  then all types of soft set operations 
are defined as follows:  

Definition 2.6. Let (F, K) and (G, Y) be two soft sets over  U. The restricted 
⊗ operation of (F, K) and (G, Y) is the soft set (H, P), denoted by (F, 
K) ⊗ℜ (G, Y)= (H, P), where P = K ∩ Y≠ ∅ and for all e ∈ P, H(e) = 
F(e)⊗G(e). Here, if P = K ∩ Y = ∅, then (F, K) ⊗ℜ(G, Y)=  ∅∅ (Ali et al., 
2009; Sezgin and Atagün, 2011; Ali et al., 2011; Aybek, 2024).  

Definition 2.7. Let (F, K) and (G, Y) be two soft sets over U. The extended 
⊗ operation (F, K) and (G,Y) is the soft set (H,P), denoted by (F, K) ⊗ε(G, 
Y) = (H, P), where P = K ∪ Y, and for all e ∈ P, 

(Maji et al., 2003; Ali et al., 2009; Sezgin et al., 2019; Stojanovic, 2021; 
Aybek, 2024) 

Definition 2.8. Let (F, K) and (G, Y) be two soft sets over U. The 
complementary extended ⊗ operation (F, K) and (G,Y) is the soft set 

(H,P), denoted by (F, K)
＊

 ⊗ε
(G, Y) = (H, P), where P = K ∪ Y, and for all e ∈ 

P, 

(Akbulut, 2024; Demirci, 2024; Sarıalioğlu, 2024). 

Definition 2.9. Let (F,K) and (G,Y) be two soft sets on U. The 
complementary soft binary piecewise ⊗ operation of (F,K) and (G,Y) is 

the soft set (H,K), denoted by (F, K)
＊
~
⊗

(G, Y) = (H, K), where for all e ∈ K, 

(Sezgin and Atagün, 2023; Sezgin and Aybek, 2023; Sezgin et al., 2023b; 
Sezgin et al., 2023c; Sezgin and Çağman, 2024; Sezgin and Demirci, 2023; 
Sezgin and Sarıalioğlu, 2024; Sezgin and Yavuz, 2023b; Sezgin and 
Dagtoros, 2023) 

Definition 2.10. Let (F,K) and (G,Y) be two soft sets on U. The soft binary 
piecewise ⊗ operation of (F,K) and (G,Y) is the soft set (H,K), denoted by 

(F, K)
~
⊗(G, Y) = (H, K), where for all e ∈ K, 

(Eren and Çalışıcı, 2019; Sezgin and Çalışıcı, 2024; Yavuz, 2024; Sezgin 
and Yavuz, 2023a). 

For more about soft sets, we refer to the following (Çağman et al., 2012; 
Sezgin, 2016; Tunçay and Sezgin, 2016; Sezgin and Orbay, 2022; 
Mahmood et al., 2018; Jana et al., 2019; Muştuoğlu et al., 2016; Sezer et al., 
2015; Sezer, 2014; Özlü and Sezgin, 2020; Atagün and Sezgin, 2018, 
Sezgin, 2018; Iftikhar and Mahmood, 2018; Sezgin et al., 2017; Mahmood 
et al., 2015; Sezgin et al., 2022). 
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Definition 2.11. Let (S, ⋆) be an algebraic structure. An element s ∈S is 
called idempotent, if  s2=s, for all s∈S. The algebraic structure (S,⋆) is said 
to be idempotent if all the elements of S are idempotent. An idempotent 
semigroup is called a band; an idempotent and commutative semigroup 
is called a semilattice; and an idempotent and commutative monoid is 
called a bounded semilattice (Clifford, 1954). 

In a monoid, although the identity element is unique, a 
semigroup/groupoid can have one or more left identities; however, if it 
has more than one left identity, it does not have a right identity element, 
thus it does not have an identity element. Similarly, a 
semigroup/groupoid can have one or more right identities; however, if it 
has more than one right identity, it does not have a left identity element, 
thus it does not have an identity element (Kilp et al., 2001). Similarly, in a 
group, although each element has a unique inverse, in a monoid, an 
element can have one or more left inverses; however, if an element has 
more than one left inverse, it does not have a right inverse, thus it does 
not have an inverse. Similarly, in a monoid, an element can have one or 
more right inverses; however, if an element has more than one right 
inverse, it does not have a left inverse, thus it does not have an inverse 
(Kilp et al., 2001). 

Definition 2.12. If a semigroup (S,*) has a left identity and every element 
has a right inverse, then the semigroup is called a left-right system and if 
the semigroup has a right identity and every element has a left inverse, 
then the semigroup is called a right-left system. The difference between 
the  left-right system and the group is that a group has a left (resp., a right) 
identity, and every element has a left (resp., a right) inverse (Maan, 1994). 

Definition 2.13. Let S be a non-empty set, and let "+" and "⋆" be two 
binary operations defined on S. If the algebraic structure (S, +, ⋆)  satisfies 
the following properties, then it is called a semiring:  

i. (S, +) is a semigroup. 

ii. (S, ⋆) is a semigroup, 

iii. For all x, y, z ∈S, x⋆(y + z) = x⋆y + x⋆z and (x +y) ⋆z = x⋆z + y⋆z 

If x+y=y+z for all x,y∈S,  then S is called an additive commutative semiring. 
If for all x,y∈S, x⋆y=y⋆x, then S is called a multiplicative commutative 
semiring. If there exists an element 1∈S such that x⋆1=1⋆x=x for all x∈S 
(multiplicative identity), then S is called semiring with unity. If there 
exists 0∈S such that for all x∈S, 0⋆x=x⋆0=0 and 0+x=x+0=x, then 0 is 
called the zero of S. A semiring with commutative addition, and a zero 
element, is called a hemiring (Vandiver, 1934). 

Definition 2.14. Let S be a non-empty set, and let "+" and "⋆" be two 
binary operations defined on S. If the algebraic structure (S, +, ⋆) satisfies 
the following properties, then it is called a near-semiring (or 
seminearring): 

i. (S,+) is a semigroup. 

ii. (S, ⋆ ) is a semigroup. 

iii. For all x,y,z∈ S, (x+y) ⋆z = x⋆z+y∗z (right distributivity) 

If the additive zero element 0 of S (that is, for all x∈S, 0+x=0+x=x) satisfies 
that for all x∈S, 0⋆x=0 (left absorbing element), then (S, +, ⋆) is called a 
(right) near-semiring with zero. If (S, +, ⋆) additionally satisfies x⋆0=0 for 
all x∈S (right absorbing element), then it is called a zero symmetric near-
semiring (Hoorn and Rootselaar, 1967).For possible applications of 
graphs and network research concerning soft sets, we refer to ( Pant et al., 
2024). 

3. SOFT BINARY PIECEWISE STAR OPERATION 

A novel soft set operation called the soft binary piecewise star operation 
is presented in this section. It also looks at the distribution rules and 
algebraic structures of the operation form in SE(U), presents an example 
of the operation, and investigates its whole algebraic properties and 
relationships with other soft set operations.  

Definition 3.1. Let (F, K) and (G, Y) be soft sets over U.  The soft binary 
piecewise star of (F, K) and (G, Y) is the soft set (H, K), denoted 

by,  (F, K)
~
∗

(G, Y) = (H, K), where for all ծ∊K,  

  F(ծ) ,    ծ∊K-Y 

H(ծ)= 

  F’(ծ)∪G’(ծ),    ծ∊K∩Y 

Example 3.2. Let E={e1,e2,e3,e4} be the parameter set, K={e1, e4} and 
Y={e2, e3, e4} be the subsets of E, and U={h1,h2,h3,h4,h5, h6} be the initial 
universe set. Assume that (F,K) and (G,Y) are the soft sets over U defined 
as following: 

(F,K)={( e1, {h2, h4,h6), (e4,{h1,h2,h5, h6})} 

(G,Y)={( e2,{h1 ,h2}), (e3,{h2,h3,h4, h5}),(e4,{h2, h3,h5})} 

Let (F,K) 
~
∗ (G,Y)=(H,K), where for all ծ∊K, 

  F(ծ),    ծ∊K-Y 

H(ծ)= 

  F’(ծ)∪G’(ծ),    ծ∊K∩Y 

Here since K={e1,e4} and K − Y={e1}, for all ծ ∊ K − Y={e1}, H(ծ)=F(ծ) and 

so H(e1)=F(e1)={h2, h4,h6};  for all ծ ∊ K ∩ Y={e4},H(ծ)=F′(ծ) ∪G’(ծ), 

H(e4)=F’(e4) ∪G’(e4)={h3,h4}∪{h1,h4, h6}={h1, h3, h4, h6}}. Thus, 

(F,K)
~
∗(G,Y)={( e1,{h2 ,h4,h6}),( e4, {h1, h3, h4, h6})}. 

Theorem 3.3. Algebraic Properties of the Operation 

1) The set SE(U) is closed under
~
∗ .  That is, when (F,K) and (G,Y)

are two soft sets over U, then so is (F,K) 
~
∗   (G,Y). 

Proof: It is clear that  
~
∗   is a binary operation in SE(U). That is, 

~
∗ :  SE(U)x SE(U)→ SE(U) 

  ((F,K), (G,Y)) → (F, K) 
~
∗  (G, Y) =  (H, K) 

Hence, the set SE(U) is closed under  
~
∗ . Similarly, 

~
∗ : SK(U)x SK(U)→ SK(U) 

  ((F,K), (G,K)) → (F, K) 
~
∗  (G, K) =(H,K) 

That is, let K be a fixed subset of the set E, and (F,K) and (G,K) be elements 

of SK(U). Then so is (F,K)
~
∗ (G,K). Namely, SK(U) is closed under

~
∗ .

2) If K∩Y’∩D=K∩Y∩D=∅, then  [(F, K)
~
∗ (G,Y)] 

~
∗  (H,D)=(F,K)

~
∗  

[(G, Y) 
~
∗ (H,D)].

Proof: First, consider the left-hand side (LHS). Let (F, K)
~
∗(G,Y)=(T,K), 

where for all ծ∊K,  

  F(ծ),    ծ∊K-Y 

T(ծ)=  

  F’(ծ)∪G’(ծ),    ծ∊K∩Y 

Let (T,K) 
~
∗ (H,D)=(M,K),  where for all ծ∊K, 

  T(ծ),    ծ∊K-D  

M(ծ)=  

  T’(ծ)∪H’(ծ),    ծ∊K∩D 

Thus, 

  F(ծ),    ծ∊(K-Y)-D=K∩Y’∩D’ 

M(ծ)=    F’(ծ)∪G’(ծ),    ծ∊(K∩Y)-D=K∩Y∩D’ 

  F’(ծ)∪H’(ծ),    ծ∊(K-Y)∩D=K∩Y’∩D 

  [ F(ծ)∩G(ծ)]∪H’(ծ),      ծ∊(K∩Y)∩D=K∩Y∩D  
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Let (G,Y)
~
∗(H,D)=(K,Y), where for all ծ∊Y, 

  G(ծ),                           ծ∊Y-D 

K(ծ)=  

  G’(ծ)∪H’(ծ),    ծ∊Y∩D 

Let (F, K)
~
∗ (K,Y)=(S,K), where for all ծ∊K, 

  F(ծ),                        ծ∊K-Y   

S(ծ)=  

  F’(ծ)∪K’(ծ),    ծ∊K∩Y 

Thus, 

  F(ծ),                                ծ∊K-Y 

S(ծ)=     F’(ծ)∪G’(ծ),                 ծ∊K∩(Y-D)=K∩Y∩D’ 

  F’(ծ)∪[G(ծ)∩H(ծ)],     ծ∊K∩(Y∩D)=K∩Y∩D  

Considering K-Y in the S function, since K-Y=K∩Y', if ծ∊Y', then ծ∊D-Y or 

ծ∊(Y∪D)'. Thus, if ծ∊K-Y, then ծ∊K∩Y’∩D’ or ծ∊K∩Y’∩D. Thus, M=S, where 

K∩Y’∩D= K∩Y∩D=∅. That is, under suitable conditions, the operation 
~
∗  is 

associative  SE(U). 

3) [(F, K)
~
∗  (G,K)] 

~
∗  (H,K) ≠ (F, K)

~
∗  [(G, K)

~
∗  (H,K)]. 

Proof: Consider first the LHS and let (F, K)
~
∗ (G,K)=(T,K), where for all 

ծ∊K;  

  F(ծ),    ծ∊K-K=∅   

T(ծ)=  

  F’(ծ)∪G’(ծ),     ծ∊K∩K=K 

Let (T,K) 
~
∗ (H,K)=(M,K), where for all ծ∊K; 

  T(ծ),    ծ∊K-K=∅   

 M(ծ)=  

  T’(ծ)∪H’(ծ),    ծ∊K∩K=K 

Thus, 

  T(ծ),    ծ∊K-K=∅   

 M(ծ)=  

  [F(ծ)∩G(ծ)]∪H’(ծ),    ծ∊K∩K=K  

Now consider the RHS. Let  (G,K)
~
∗ (H,K)=(L,K), where for all ծ∊K;

  G(ծ),    ծ∊K-K=∅   

L(ծ)=  

  G’(ծ)∪H’(ծ),    ծ∊K∩K=K 

Let (F, K) 
~
∗ (L,K)=(N,K), where for all ծ∊K; 

  F(ծ),    ծ∊K-K=∅   

N(ծ)=  

  F’(ծ)∪L’(ծ),    ծ∊K∩K=K 

Thus, 

  F(ծ),    ծ∊K-K=∅   

N(ծ)=  

       F’(ծ)∪[G(ծ) ∩H(ծ)],     ծ∊K∩K=K       

It is seen that M≠N. That is, for the soft sets whose parameter sets are the 

same, the operation 
~
∗  is not associative. 

4) (F, K)
~
∗ (G,Y)≠(G, Y)

~
∗(F,K). 

Proof: Let (F,K) 
~
∗(G,Y)=(H,K), where for all ծ∊K; 

  F(ծ),    ծ∊K-Y  

H(ծ)=  

  F’(ծ)∪G’(ծ),    ծ∊K∩Y  

Let (G, Y) 
~
∗ (F,K)=(T,Y), where for all ծ∊Y; 

  G(ծ),    ծ∊Y-K  

 T(ծ)= 

  G’(ծ)∪F’(ծ),    ծ∊Y∩K  

Here, while the parameter set of the soft set of the LHS is K; the parameter 
set of the soft set of the RHS is Y. Thus, by the definition of soft equality; 

(F, K) 
~
∗  (G,Y)≠(G, Y)

~
∗  (F,K). 

But it is obvious that (F, K) 
~
∗ (G,K)=(G,K)

~
∗ (F,K). That is, while the 

operation 
~
∗  is not commutative in SE(U), the operation 

~
∗   is commutative

in the set  SK(U) , where K⊆E is a fixed parameter set. Namely, 

(F, K) 
~
∗ (G,K)=(G,K)

~
∗(F,K). 

5) (F, K)
~
∗ (F,K)=(F, K)r.

Proof:  Let (F, K)
~
∗ (F,K)=(H,K), where for all ծ∊K;

  F(ծ),    ծ∊K-K=∅  

H(ծ)=  

  F’(ծ)∪F’(ծ),    ծ∊K∩K=K 

where for all ծ∊K; H(ծ)=F’(ծ)∪F’(ծ)=F’(ծ), thus (H,K)=(F, K)r. That is, the 

operation 
~
∗  is not idempotent in SE(U). 

Theorem 3.3.1. By Theorem 3.3 (1), (2) and (4), (SE(U),
~
∗) is a 

commutative but not idempotent semigroup, under the condition 
K∩Y’∩D=K∩Y∩D=∅, where (F,K), (G,Y) and (H,D) are elements of SE(U). 

By Theorem 3.3 (3) since 
~
∗ is not associative in SK(U), where K⊆ E is a 

fixed parameter set, (SK(U),
~
∗ )  is not a semigrup; however, it is obvious 

that it is a commutative groupoid. 

6) (F, K)
~
∗ ∅K=∅K

~
 ∗

(F, K) = UK. 

Proof: Let ∅K=(S,K), where for all ծ∊K;S(ծ)=∅. Let (F, K)
~
 ∗ (S,K)=(H,K), 

where for all ծ∊K; 

  F(ծ),    ծ∊K-K=∅  

H(ծ)=  

  F’(ծ)∪S’(ծ),    ծ∊K∩K=K 

Thus, H(ծ)=F’(ծ)∪S’(ծ)=F’(ծ)∪U=U, dor all ծ∊K. Hence, (H,K)=UK.  

7) (F, K)
~
∗ ∅E=UK.

Proof: Let  ∅E=(S,E), where for all ծ∊E;  S(ծ)=∅. Let (F, K)
~
∗ (S,E)=(H,K). 

Thus, for  all ծ∊K, 

  F(ծ),    ծ∊K-E=∅ 

H(ծ)=  

  F’(ծ)∪S’(ծ),      ծ∊K∩E=K 
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Hence,for all ծ∊K;H(ծ)=F’(ծ)∪S’(ծ)=F’(ծ)∪U=U, so (H,K)=UK. 

8) (F, K)
~
∗  ∅∅=(F,K). 

Proof:Let ∅∅=(S, ∅) and (F,K)
~
∗(S, ∅)=(H,K). Hence, ծ∊K, 

  F(ծ),    ծ∊K-∅=K 

H(ծ)=  

  F’(ծ) ∪S’(ծ),      ծ∊K∩∅=∅ 

Thus, for all ծ∊K; H(ծ)=F(ծ), (H,K)=(F,K). That is, ∅∅ is the right identity 

element for the operation  
~
∗   in SE(U). 

9) ∅∅

~
∗

(F, K) = ∅∅. 

Proof:  Let ∅∅=(S, ∅) and (S,∅)
~
∗(F,K)=(H,∅). ,∅). Since ∅∅ is the only soft

set whose parameter set is the empty set, (H,∅)= ∅∅. 

That is, in SE(U),  for the operation 
~
∗ , the left inverse of each element with 

respect to the right identity element ∅∅  is the soft set ∅∅ . Moreover, 

in SE(U), the left absorbing element of the  
~
∗  operation is the soft set ∅∅ . 

Theorem 3.3.2. From the properties of (1), (2), (8) and (9), the algebraic 

structure (SE(U),
~
∗ ) is a right-left system with the right identity  ∅∅ , and

the left inverses of each element is ∅∅  under the condition K∩Y∩D 
=K∩Y’∩D=∅, where (F,K), (G,Y) and (H, D) are the elements of SE(U). 

10) (F, K)
~
∗  UK=UK 

~
∗ (F, K) = (F, K)r.

Proof: Let  UK=(T,K), where for all ծ∊K; T(ծ)=U. Let (F, K)  
~
∗ (T, K)=(H,K),

where for all ծ∊K; 

  F(ծ),    ծ∊K-K=∅  

H(ծ)=  

  F’(ծ)∪T’(ծ),    ծ∊K∩K=K 

Thus, for all ծ∊K;H(ծ)=F’(ծ)∪T’(ծ)=F’(ծ)∪∅=F’(ծ), hence (H,K)=(F, K)r. 

11) (F, K)
~
∗  UE=(F, K)r.

Proof:  Let UE=(T,E), where for all ծ∊E; T(ծ)=U. Let (F, K)
~
∗ (T, E)=(H,K), 

where for all ծ∊K için ; 

  F(ծ),    ծ∊K-E=∅  

H(ծ)=  

  F’(ծ)∪T’(ծ),    ծ∊K∩E=K  

Thus,for all ծ∊K; H(ծ)=F’(ծ)∪T’(ծ)=F’(ծ)∪∅=F’(ծ). Thus,  (H,K)=(F, K)r. 

12) (F, K)
~
∗ (F, K)r=(F, K)r 

~
∗

(F, K) = UK. 

Proof:  Let (F, K)r=(H,K), where for all ծ∊K; H(ծ)=F’(ծ). Let 

(F, K)
~
∗ (H, K)=(T,K), where for all ծ∊K; 

  F(ծ),                          ծ∊K-K=∅  

T(ծ)=  

  F’(ծ)∪H’(ծ),    ծ∊K∩K=K 

Thus,for all ծ∊K; T(ծ)=F’(ծ)∪H’(ծ)=F’(ծ)∪F(ծ)=U, hence (T,K)=UK. 

13) [(F, K)
~
∗ (G,Y)]r=(F,K) 

＊
~
∩

 (G,Y) 

Proof: Let  (F, K)
~
∗  (G,Y)=(H,K), where for all ծ∊K, 

  F(ծ),    ծ∊K-Y 

H(ծ)= 

  F’(ծ)∪G’(ծ),      ծ∊K∩Y 

Let (H, K)r=(T,K), where for all ծ∊K, 

  F’(ծ),                      ծ∊K-Y 

T(ծ)= 

  F(ծ)∩G(ծ),    ծ∊K∩Y 

Thus, (T,K)=(F,K) 
＊
~
∩

(G,Y). 

14) (F, K)
~
∗ (G, K) = ∅K ⇔(F, K) = (G, K) = UK.

Proof:  Let (F, K) 
~
∗ (G, K) = (T, K), where for all ծ∊K, 

  F(ծ),    ծ∊K-K=∅  

T(ծ)=  

  F’(ծ)∪G’(ծ),     ծ∊K∩K=K 

Since (T, K) = ∅K, for all ծ∊K, T(ծ)=∅. Thus, for all ծ∊K, 

T(ծ)=F’(ծ)∪G’(ծ)=∅ ⇔ for all ծ ∊ K,  F’(ծ)=∅ and G’(ծ)=∅ ⇔ For all ծ∊K, 

F(ծ)=U and G(ծ)=U ⇔(F, K) = (G, K) = UK. 

15) ∅K ⊆̃ (F, K)
~
∗

(G, Y) and ∅Y ⊆̃ (G, Y)
~
∗ (F, K). 

16) (F, K)
~
∗ (G, Y)  ⊆̃  UK  and (G, Y)

~
∗ (F, K) ⊆̃  UY.

17) (F, K)r ⊆̃ (F, K)
~
∗ (G,K) and (G, K)r ⊆̃ (F, K)

~
∗ (G,K). 

Proof: Let  (F, K) 
~
∗ (G,K)=(H,K), where for all ծ∊K, 

  F(ծ),    ծ∊K-K=∅ 

H(ծ)= 

  F’(ծ)∪G’(ծ),    ծ∊K∩K=K 

Since for all ծ∊K, H(ծ)=F’(ծ)⊆ F’(𝜔) ∪

G’(𝜔), (F, K)r ⊆̃ (F, K)
~
∗

(G, K).  (G, K)r ⊆̃ (F, K) 
~
∗ (G,K) can be shown 

similarly. 

18) If (F,K)⊆̃ (G, Y), then  (F,K)
~
∗ (G,Y)=(F,K)r. 

Proof: Let (F,K)⊆̃ (G, Y). Then, K⊆Y and for all ծ∊K, F(ծ) ⊆

G(𝜔). Let (F, K)
~
∗ (G,Y)=(H,K), where for all ծ∊K, 

  F(ծ),    ծ∊K-Y=∅ 

H(ծ)= 

  F’(ծ)∪G’(ծ),    ծ∊K∩Y=K 

Since for all ծ∊K,F(ծ)⊆ G(𝜔),  

then G’(ծ)⊆ F′(ծ). Thus, H(ծ)=F’(𝜔) ∪ G’(𝜔)=F’(𝜔). Hence, 

(F,K)
~
∗ (G,Y)=(F,K)r. 

19) If (F,K) ⊆̃ (G, K), then (H,Z)
~
∗ (G, K)  ⊆̃ (H,Z) 

~
∗

(F, K) and (G,K) 
~
∗ (H, K)

⊆̃ (F,K) 
~
∗

(H, K). 

Proof: Let (F,K)⊆̃ (G, K). Then, for all ծ ∊K, F(ծ)⊆ G(ծ), so for all ծ ∊ K, 

G’(ծ)⊆ F′(ծ). Let (H,Z) 
~
∗

(G, K) = (W,Z). Thus, for all ծ ∊Z, 

  H(ծ),    ծ∊Z-K 

W(ծ)= 

  H’(ծ)∪G’(ծ),    ծ∊Z∩K 

Let (H,Z) 
~
∗

(F, K)=(L,Z), where for all ծ ∊Z, 

  H(ծ),    ծ∊Z-K 

L(ծ)= 

  H’(ծ)∪F’(ծ),     ծ∊Z∩K 
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If for all ծ ∊Z-K, then W(ծ)=H(ծ)⊆H(ծ)=L(ծ), if for all ծ ∊Z∩K, then 

W(ծ)=H’(ծ)∪G’ (ծ)⊆ H’(ծ)∪F’(ծ)=L(ծ). Thus, (H,Z)
~
∗ (G, K)  ⊆̃ 

(H,Z)
~
∗

(F, K).  Moreover, since for all ծ∊K, G’(ծ)∪H’(ծ) ⊆ F’(ծ)∪H’(ծ), (G,K) 
~
∗ (H, K)  ⊆̃ (F,K) 

~
∗

(H, K). 

20) If (H,Z) 
~
∗ (G, K)  ⊆̃ (H,Z) 

~
∗

(F, K), then (F,K) ⊆̃ (G, K) needs not to be 

true. Similarly, if  (G,K) 
~
∗ (H, K)  ⊆̃ (F,K) 

~
∗

(H, K), then (F,K) ⊆̃ (G, K)  needs 

not to be true.  That is, the converse of Theorem 3.3. (19) is not true. 

Proof: To demonstrate that the converse of Theorem 3.3. (19) is not true, 
let's provide an example. Let E={e1,e2,e3,e4,e5} be the parameter set, 
K={e1,e3} and Z={e1,e3, e5} be two subsets of E, U={h1,h2, h3,h4, h5} be the 
universal set. Let (F,K), (G,K) and (H,Z) be soft sets over U as follows: 

(F,K)={(e1,{h2, h5}),(e3,{h1,h2,h5})}, (G,K)={(e1,,{h2}),(e3,{h1,h2}))}, 

(H,Z)={( e1, ∅), (e3, ∅), (e5, {h2, h5}}. 

Let (H,Z)
~
∗

(G, K) = (L,Z), where 𝑓𝑜𝑟 𝑎𝑙𝑙 ծ ∊ Z-K={e5}, 

L(e5)=H(e5)={h2, h5}, 𝑓𝑜𝑟 𝑎𝑙𝑙 ծ ∊ Z ∩K={e1, e3}, L(e1)=H’(e1)∪G’(e1)=U, 
and L(e3)=H’(e3)∪G’(e3)=U. Thus, 

(H,Z)
~
∗

(G, K)={(e1,U),(e3,U),(e5, {h2, h5})}. 

Now let (H,Z)
~
∗

(F, K) = (W,Z), where for all ծ ∊ Z-K={e5}, 

W(e5)=H(e5)={h2, h5}, 𝑓𝑜𝑟 𝑎𝑙𝑙 ծ ∊ Z ∩K={e1, e3}, W(e1)=H’(e1)∪F’(e1)=U, 
and W(e3)=H’(e3)∪F'(e3)=U. Thus, 

(H,Z)
~
∗

(F, K)={(e1,U),(e3,U),(e5, {h2, h5})}.  

Hence, (H,Z)
~
∗ (G, K)  ⊆̃(H,Z)

~
∗

(F, K), but (F,K) ⊆̃ (G, K) is not true. 

Similarly, if (G,K) 
~
∗ (H, K)  ⊆̃ (F,K) 

~
∗

(H, K), then (F,K) ⊆̃ (G, K) needs not 

to be true can be shown by taking as (H,K)={( e1,∅),(e3,∅)}. 

21) Let (F,T) ⊆̃ (G, T) and (K,T) ⊆̃ (L, T), then (G,T)
~
∗(L,T) ⊆̃(F,T)

~
∗(K,T). 

Proof: Let (F,T)⊆̃ (G, T) and (K,T)⊆̃ (L, T). Thus, for all ծ ∊T, F(ծ)⊆ G(ω) 

and K(ծ)⊆ L(ω). Hence, for all ծ ∊T, G’(ծ)⊆ F′(ծ) and L’(ծ)⊆ K′(ծ). Let 

(G,T)
~
∗ (L,T)=(M,T). Thus, for all ծ ∊T, M(ծ)=G’(ծ)∪L’(ծ). Let

(F,T)
~
∗(K,T)=(N,T). Thus, for all ծ ∊T, N(ծ)=F’(ծ)∪K’(ծ). Since for all ծ ∊T,

G’(ծ)⊆ F′(ծ) ve L’(ծ)⊆ K′(ω), M(ծ)=G’(ծ)∪L’(ծ)⊆F’(ծ)∪K’(ծ)=N(ծ). Thus, 

(G,T) 
~
∗ (L,T) ⊆̃(F,T)

~
∗(K,T) 

22)  (F, K)
~
θ(G, K) ⊆̃ (F, K)

~
∗

(G, K). 

Proof: Let (F, K)
~
θ(G, K) = (T, K). Thus, for all ծ∊K, 

  F(ծ),    ծ∊K-K=∅ 

T(ծ)=  

  F’(ծ) ∩G’(ծ),    ծ∊K∩K=K 

Let (F, K)
~
∗ (G, K) = (W, K). Thus, for all ծ∊K, 

  F(ծ),    ծ∊K-K=∅  

W(ծ)=  

  F’(ծ)∪G’(ծ),    ծ∊K∩K=K 

Since for all ծ∊K, T(ծ)=F’(ծ)∩G’(ծ)⊆F’(ծ)∪G’(ծ)=W(ծ). Hence, 

(F, K)
~
θ(G, K) ⊆̃ (F, K)

~
∗

(G, K). 

4. DISTRIBUTION RULES 

This section provides a detailed examination of the distribution of the soft 
binary piecewise star operation over various soft set operations, leading 
to the discovery of several intriguing algebraic structures formed in the 
collection of soft sets together with the soft binary piecewise star 
operation and other various types of soft set operations. 

Proposition 4.1. Let (F,K), (G,Y), and (H,D) be soft sets over U. Then, the 
soft binary piecewise star operation distributes over restricted 
operations as follows, under K∩ Y ∩ D = ∅. 

1)[(F,K) ∪R (G,Y)]
~
∗  (H,D)=[(F, K)

~
∗ (H,D)]∪R[(G, Y) 

~
∗  (H,D)].

Proof: First consider the LHS. Let (F,K)∪R(G,Y)=(M,K∩Y), where for all 

ծ∊K∩Y, M(ծ)=F(ծ)∪G(ծ). Let (M,K∩Y) 
~
∗ (H,D)=(N,K∩Y), where for all 

ծ∊K∩Y, 

  M(ծ),    ծ∊(K∩Y)-D 

N(ծ)= 

  M’(ծ)∪H’(ծ),      ծ∊(K∩Y)∩D 

Thus, 

  F(ծ)∪G(ծ),    ծ∊(K∩Y)-D=K∩Y∩D’ 

N(ծ)= 

  [ F’(ծ)∩G’(ծ)]∪H’(ծ),     ծ∊(K∩Y)∩D  

Now consider the RHS, i.e., [(F, K) 
~
∗ (H,D)]∪R[(G, Y) 

~
∗ (H,D)]. Let 

(F, K)
~
∗ (H,D)=(V,K),  where for all ծ∊K, 

  F(ծ),    ծ∊K-D 

V(ծ)= 

  F’(ծ)∪H’(ծ),    ծ∊K∩D  

Let (G,Y)
~
∗(H,D)=(W,Y),  where for all ծ∊Y, 

  G(ծ),    ծ∊Y-D 

W(ծ)=  

  G’(ծ)∪H’(ծ),    ծ∊Y∩D 

Let (V,K)∪R (W,Y)=(T,K∩Y), where for all ծ∊K∩Y, T(ծ)=V(ծ) ∪W(ծ), 

  F(ծ)∪G(ծ),   ծ∊(K-D)∩(Y-D)=K∩Y∩D’ 

T(ծ)=    F(ծ)∪[G’(ծ)∪H’(ծ)],    ծ∊(K-D)∩(Y∩D)=∅ 

  [F’(ծ)∪H’(ծ)]∪G(ծ),    ծ∊(K∩D)∩(Y-D)=∅  

  [F’(ծ)∪H’(ծ) ]∪[G’(ծ)∪H’(ծ)],    ծ∊(K∩D)∩(Y∩D)=K∩Y∩D  

Thus, 

  F(ծ)∪G(ծ),    ծ∊K∩Y∩D’ 

T(ծ)= 

  [F’(ծ)∪H’(ծ) ]∪[G’(ծ)∪H’(ծ)],    ծ∊K∩Y∩D  

Hence, N=T, where  K∩ Y ∩ D = ∅. 

2)[(F,K) ∩R (G,Y)]
~
∗ (H,D)=[(F, K)

~
∗(H,D)]∩R[(G, Y)

~
∗  (H,D)].

Corollary 4.1.1. (SE(U),∪R,
~
∗) is an additive commutative and additive 

idempotent (right) near-semiring without zero and unity under certain 
conditions. 

Proof: (SE(U),∪R)  is a commutative, idempotent monoid with identity 
element ∅E, that is, a bounded semilattice (hence a semigroup) (Ali et al., 

2011). By Theorem 3.3.1, (SE(U),
~
∗)  is a non-commutative and not

idempotent semigroup under the condition T∩Z’∩M = T∩Z∩M =∅, where 
(F,T), (G,Z) and (H,M) are soft sets over U.  Besides, by Proposition 4.1. (1), 
~
∗  distributes over ∩R from RHS under the condition T∩ Z ∩ M = ∅. Thus,

(SE(U),∪R,
~
∗) is an additive commutative and additive idempotent (right) 

near-semiring without zero and unity under certain conditions. 

Corollary 4.1.2. (SE(U),∩R,
~
∗) is an additive commutative and additive 

idempotent (right) near-semiring without zero and unity under certain 
conditions. 

Proof: (SE(U),∩R)  is a commutative, idempotent monoid with identity 
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element UE, that is, a bounded semilattice (hence a semigroup) (Ali et al., 

2011). By Theorem 3.3.1, (SE(U),
~
∗)  is a non-commutative and not

idempotent semigroup under the condition T∩Z’∩M = T∩Z∩M =∅, where 
(F,T), (G,Z) and (H,M) are soft sets over U.  Besides, by Proposition 4.1. (2), 
~
∗  distributes over ∩R from RHS under the condition T∩ Z ∩ M = ∅. Thus,

(SE(U),∩R,
~
∗) is an additive commutative and additive idempotent (right) 

near-semiring without zero and unity under certain conditions. 

Proposition 4.2. Let (F,K), (G,Y), and (H,D) be soft sets over U. Then, the 
distributions of the soft binary piecewise star operation over extended 
soft set operations are as follows: 

LHS Distributions:  The followings hold, where K∩(Y∆D)= K∩Y∩D=∅. 

𝟏) (F, K)
~
∗ [(G,Y)∪ε(H,D)]=[(F,K) 

~
∗ (G,Y)] ∪ε [(F,K) 

~
∗ (H, D)].

 Proof: First, consider the LHS. Let (G, Y) ∪ε(H,D)=(M,Y∪D), where for all 
ծ∊Y∪D, 

  G(ծ),    ծ∊Y-D 

M(ծ)=    H(ծ),    ծ∊D-Y 

  G(ծ)∪H(ծ),      ծ∊Y∩D 

Let (F, K) 
~
∗ (M,Y∪D)=(N,K), where for all ծ∊K,

  F(ծ),    ծ∊K-(Y∪D)  

N(ծ)=  

  F’(ծ)∪M’(ծ),    ծ∊K∩(Y∪D) 

Thus,  

       F(ծ),         ծ∊K-(Y∪D)=K∩Y’∩D’  

N(ծ)=        F’(ծ)∪G’(ծ),    ծ∊K∩(Y-D)=K∩Y∩D’   

  F’(ծ)∪H’(ծ),    ծ∊K∩(D-Y)=K∩Y’∩D 

       F’(ծ)∪[(G’(ծ)∩H’(ծ)],        ծ∊K∩Y∩D=K∩Y∩D     

Now consider the RHS. Let (F, K)
~
∗  (G, Y)=(V,K), where for all ծ∊K, 

  F(ծ),                           ծ∊K-Y 

V(ծ)= 

  F’(ծ)∪G’(ծ),    ծ∊K∩Y  

Let (F,K) 
~
∗ (H, D)=(W,K), where for all ծ∊K, 

  F(ծ),    ծ∊K-D 

W(ծ)=  

       F’(ծ)∪H’(ծ),                ծ∊K∩D 

Let (V,K) ∪ε(W,K)=(T,K), where for all ծ∊K, 

  V(ծ),    ծ∊K-K=∅ 

T(ծ)=     W(ծ),    ծ∊K-K=∅ 

  V(ծ) ∩W(ծ),    ծ∊K∩K=K 

Thus,  

  F(ծ) ∪F(ծ),    ծ∊(K-Y)∩(K-D)= K∩Y’∩D’ 

       F(ծ) ∪ [F’(ծ)∪H’(ծ)],    ծ∊(K-Y)∩(K∩D)=K∩Y’∩D 

T(ծ)=   [F’(ծ)∪G’(ծ)]∪F(ծ),     ծ∊(K∩Y)∩(K-D)= K∩Y∩D’ 

  [F’(ծ)∪G’(ծ)]∪[F’(ծ)∪H’(ծ)],      ծ∊(K∩Y)∩(K∩D)=K∩Y∩D  

Thus, 

  F(ծ),     ծ∊(K-Y)∩(K-D)= K∩Y’∩D’ 

      U     ծ∊(K-Y)∩(K∩D)=K∩Y’∩D 

T(ծ)=     U     ծ∊(K∩Y)∩(K-D)= K∩Y∩D’ 

  F’(ծ)∪G’(ծ)∪H’(ծ),    ծ∊(K∩Y)∩(K∩D)=K∩Y∩D  

N=T, where K∩Y’∩D=K∩Y∩D’=K∩Y∩D=∅. It is obvious that the condition 
K∩Y’∩D=K∩Y∩D’=∅ is equal to the condition K∩(Y∆D)=∅. 

2) (F, K)
~
∗[(G,Y)∩ε(H,D)]=[(F,K) 

~
∗ (G,Y)] ∩ε [(F,K) 

~
∗ (H, D)].

RHS Distributions:  The followings hold where K∩Y∩D=∅. 

1) [(F,K) ∩ε(G,Y)]
~
∗ (H,D)=[(F,K)

~
∗  (H,D)]∩ε[(G, Y) 

~
∗ (H,D)]. 

Proof: First consider the LHS. Let (F, K) ∩ε(G,Y)=(M,K∪Y), where for all 
ծ∊K∪Y  

  F(ծ),    ծ∊K-Y 

M(ծ)=    G(ծ),    ծ∊Y-K 

  F(ծ)∩G(ծ),    ծ∊K∩Y 

Let (M,K∪Y)
~
∗  (H,D)=(N,K∪Y), where for all ծ∊K∪Y, 

  M(ծ),    ծ∊(K∪Y)-D 

N(ծ)=  

  M’(ծ)∪H’(ծ),    ծ∊(K∪Y)∩D 

Thus, 

  F(ծ),    ծ∊(K-Y)-D=K∩Y’∩D’ 

  G(ծ),    ծ∊(Y-K)-D=K’∩Y∩D’ 

N(ծ)=     F(ծ)∩G(ծ),      ծ∊(K∩Y)-D=K∩Y∩D’ 

  F’(ծ)∪H’(ծ),    ծ∊(K-Y)∩D=K∩Y’∩D 

  G’(ծ)∪H’(ծ),    ծ∊(Y-K)∩D=K’∩Y∩D 

  ［ F’(ծ) ∪G’(ծ)] ∪H’(ծ),    ծ∊(K∩Y)∩D=K∩Y∩D  

Now consider the RHS, that is, [(F, K)
~
∗(H,D)]∩ε[(G,Y)

~
∗(H,D)]. Let

(F,K)
~
∗(H,D)=(V,K), where for all ծ∊K, 

  F(ծ),                           ծ∊K-D 

V(ծ)= 

  F’(ծ)∪H’(ծ),    ծ∊K∩D  

Let (G,Y) 
~
∗ (H,D)=(W,Y), where for all ծ∊Y, 

  G(ծ),    ծ∊Y-D 

W(ծ)= 

       G’(ծ)∪H’(ծ),         ծ∊Y∩D 

Let (V,K) ∩ε (W, Y)=(T, K∪Y), where for all ծ∊K∪Y, 

  V(ծ),    ծ∊K-Y 

T(ծ)=      W(ծ),    ծ∊Y-K 

  V(ծ)∩W(ծ),    ծ∊K∩Y 

Thus, 

  F(ծ),         ծ∊(K-D)-Y=K∩Y’∩D’ 

  F’(ծ)∪H’(ծ),         ծ∊(K∩D)-Y=K∩Y’∩D 

  G(ծ),        ծ∊(Y-D)-K=K’∩Y∩D’ 

T(ծ)=     G’(ծ)∪H’(ծ),         ծ∊(Y∩D)-K=K’∩Y∩D 

  F(ծ)∩G(ծ),         ծ∊(K-D)∩(Y-D)=K∩Y∩D’ 

  F(ծ) ∩ [G’(ծ)∪H’(ծ)],    ծ∊(K-D)∩(Y∩D)=∅ 

  [F’(ծ)∪H’(ծ)]∩G(ծ),      ծ∊(K∩D)∩(Y-D)=∅  

  [F’(ծ)∪H’(ծ)]∩[G’(ծ)∪H’(ծ)],   ծ∊(K∩D)∩(Y∩D)=K∩Y∩D  
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Thus, 

  F(ծ),    ծ∊K∩Y’∩D’ 

  F’(ծ)∪H’(ծ),    ծ∊K∩Y’∩D 

  G(ծ),    ծ∊K’∩Y∩D’ 

T(ծ)=    G’(ծ)∪H’(ծ),   ծ∊K’∩Y∩D 

  F(ծ)∩G(ծ),   ծ∊K∩Y∩D’ 

  [F’(ծ)∪H’(ծ)]∩[G’(ծ)∪H’(ծ)],    ծ∊K∩Y∩D  

Thus, N=Y, where  K∩Y∩D=∅. 

2) [(F,K) ∪ε (G,Y)]
~
∗  (H,D)=[(F,K) 

~
∗ (H,D)]∪ε[(G, Y) 

~
∗ (H,D)]. 

3) [(F,K) \ε (G,Y)]
~
∗  (H,D)=[(F,K) 

~
∗ (H,D)]\ε[(G, Y) 

~
∗ (H,D)]. 

4) [(F,K) ∆ε(G,Y)]
~
∗(H,D)=[(F,K)

~
∗  (H,D)]∆ε[(G, Y)

~
∗(H,D)]. 

5) [(F,K) +ε(G,Y)]
~
∗(H,D)=[(F,K)

~
∗ (H,D)]+ε[(G, Y)

~
∗ (H,D)]. 

6) [(F,K) γε(G,Y)]
~
∗(H,D)=[(F,K)

~
∗ (H,D)]γε[(G, Y)

~
∗ (H,D)]. 

7) [(F,K) ∗ε(G,Y)]
~
∗(H,D)=[(F,K)

~
∗ (H,D)]∗ε[(G, Y) 

~
∗(H,D)]. 

8) [(F,K) θε(G,Y)]
~
∗ (H,D)=[(F,K)

~
∗ (H,D)]θε[(G, Y) 

~
∗ (H,D)]. 

Corollary 4.2.1. (SE(U),∪ε,
~
∗ ) and (SE(U),∩ε,

~
∗) are additive commutative

and additive idempotent (right) near-semirings with zero but without 
unity and without zero symmetric property under certain conditions. 

Furthermore, (SE(U),\ε,
~
∗ ), (SE(U),∆ε,

~
∗), (SE(U),+ε,

~
∗), (SE(U),γε,

~
∗), 

(SE(U),λε,
~
∗ ), (SE(U),∗ε,

~
∗), (SE(U),θε,

~
∗) are additive commutative, not

idempotent (right) near-semirings with zero but without unity and zero 
symmetric property under certain conditions. 

Proof: Ali et al. [6] showed that (SE(U), ∪ε)  is a commutative, idempotent 
monoid with identity element ∅∅ , that is, a bounded semilattice (hence a 

semigroup). By Theorem 3.3.1, (SE(U),
~
∗)  is a non-commutative and not 

idempotent semigroup under the condition T∩Z’∩M = T∩Z∩M =∅, where 
(F,T), (G,Z) and (H,M) are soft sets over U.  Besides,  by Theorem 3.3 (9), 

∅∅

~
∗

(F, T)=∅∅, that is  ∅∅ is the left absorbing element for 
~
∗   in SE(U),

furthermore by Proposition 4.2, 
~
∗ distributes over ∪ε from RHS under

the condition T∩Z∩M=∅. Thus, (SE(U), ∪ε,
~
θ) is an additive commutative

and additive idempotent (right) near-semiring with zero but without 

unity under certain conditions. Moreover, since (F, K)
~
∗ ∅∅ ≠ ∅∅, 

(SE(U),∪ε,
~
∗ ) is a (right) near-semiring without zero symettric property. 

Similarly, (SE(U), ∩ε ,
~
θ) is an additive commutative and additive

idempotent (right) near-semiring with zero, but without unity under 

certain conditions. Furthermore, (SE(U),\ε,
~
∗), (SE(U),∆ε,

~
∗), (SE(U),+ε,

~
∗),

(SE(U),γε,
~
∗), (SE(U),λε,

~
∗), (SE(U),∗ε,

~
∗ ), (SE(U),θε,

~
∗ ) are all additive

commutative not idempotent (right) near-semirings with zero, but 
without unity, and zero symmetric property under certain conditions.  
Here, note that Aybek (2024) showed that the first operation is 
associative in SE(U) under the condition T∩Z∩M=∅ (for ∆ε, without any 
conditions). 

Corollary 4.2.2. (SE(U),∪ε,
~
∗ ) and (SE(U), ∩ε,

~
∗) are additive 

commutative and additive idempotent semirings without zero and 
without unity under certain conditions. 

Proof: Ali et al. [6] showed that (SE(U), ∪ε)  is a commutative, idempotent 
monoid with identity element ∅∅, that is, a bounded semilattice (hence a 

semigroup). By Theorem 3.3.1, (SE(U),
~
∗)  is a non-commutative and not 

idempotent semigroup under the condition T∩Z’∩M = T∩Z∩M =∅, where 

(F,T), (G,Z) and (H,M) are soft sets over U.  Besides,  by Proposition 4.2,  
~
∗  

distributes over ∪ε from LHS under the condition T∩(Z∆M)= T∩Z∩M=∅, 

and 
~
∗  distributes over ∪ε from RHS under the condition T∩Z∩M=∅. Thus,

(SE(U), ∪ε,
~
θ) is an additive commutative and additive idempotent

semiring without zero and without unity under certain conditions. One 

can similarly show that (SE(U), ∩ε,
~
θ) is an additive commutative and 

additive idempotent semiring without zero an unity under certain 
conditions. 

Proposition 4.3. Let (F,K), (G,Y), (H,D) be soft sets on U. Then, the 
distributions of the soft binary piecewise star operation over soft binary 
piecewise operations are as follows: The followings hold where 
K∩Y∩D=∅. 

1) [(F, K) 
~
∩ (G,Y)]

~
∗  (H,D)=[(F,K)

~
∗(H,D)] 

~
∩ [(G, Y)

~
∗  (H,D)].

Proof: First, consider the LHS. Let  (F, K)
~
∩(G,Y)=(M,K), where for all ծ∊K, 

  F(ծ),    ծ∊K-Y 

M(ծ)= 

  F(ծ)∩G(ծ),    ծ∊K∩Y 

Let (M,K) 
~
∗ (H,D)=(N,K), where for all ծ∊K, 

  M(ծ),    ծ∊K-D 

N(ծ)= 

  M’(ծ)∪H’(ծ),    ծ∊K∩D 

Thus, 

  F(ծ),    ծ∊(K-Y)-D=K∩Y’∩D’  

N(ծ)=    F(ծ)∩G(ծ),    ծ∊(K∩Y)-D=K∩Y∩D’  

  F’(ծ)∪H’(ծ),    ծ∊(K-Y)∩D=K∩Y’∩D 

  [F’(ծ)∪G’(ծ)]∪ H’(ծ),    ծ∊(K∩Y)∩D=K∩Y∩D  

Now consider the RHS, i.e.  [(F,K) 
~
∗(H,D)]

~
∩[(G, Y) 

~
∗  (H,D)]. Let (F, K) 

~
∗  

(H,D)=(V,K), where for all ծ∊K, 

  F(ծ),     ծ∊K-D 

V(ծ)= 

  F’(ծ)∪H’(ծ),    ծ∊K∩D  

Let  (G,Y)
~
∗  (H,D)=(W,Y), where for all ծ∊Y, 

  G(ծ),    ծ∊Y-D 

W(ծ)= 

  G’(ծ)∪H’(ծ),    ծ∊Y∩D 

Let (V,K) 
~
∩ (W,Y)=(T,K), where for all ծ∊K, 

  V(ծ),    ծ∊K-Y 

 T(ծ)= 

  V(ծ)∩W(ծ),    ծ∊K∩Y 

Thus, 

  F(ծ),    ծ∊(K-D)-Y=K∩Y’∩D’ 

  F’(ծ)∪H’(ծ),   ծ∊(K∩D)-Y=K∩Y’∩D 

T(ծ)=    F(ծ)∩G(ծ),   ծ∊(K-D)∩(Y-D)=K∩Y∩D’ 

  F(ծ) ∩ [G’(ծ)∪H’(ծ)],    ծ∊(K-D)∩(Y∩D)=∅ 

  [F’(ծ)∪H’(ծ)] ∩G(ծ),    ծ∊(K∩D)∩(Y-D)=∅ 

  [F’(ծ)∪H’(ծ)] ∩[G’(ծ)∪H’(ծ)],    ծ∊(K∩D)∩(Y∩D)=K∩Y∩D  

Thus,  

  F(ծ),   ծ∊K∩Y’∩D’ 

  F’(ծ)∪H’(ծ),   ծ∊K∩Y’∩D 

T(ծ)=     F(ծ)∩G(ծ),    ծ∊K∩Y∩D’ 

  [F’(ծ)∩G’(ծ)]∪H’(ծ),    ծ∊K∩Y∩D  
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Thus, N=T, where K∩Y∩D=∅. 

2) [(F, K) 
~
∪ (G,Y)]

~
∗(H,D)=[(F,K)

~
∗(H,D)] 

~ 
∪ [(G, Y)

~
∗  (H,D)].

3) [(F, K) 
~
\(G,Y)]

~
∗ (H,D)=[(F,K)

~
∗ (H,D)] 

~ 
\ [(G, Y)

~
∗  (H,D)]. 

4) [(F, K)
~
∆(G,Y)]

~
∗  (H,D)=[(F,K)

~
∗ (H,D)] 

~
∆ [(G, Y)

~
∗  (H,D)].

5) [(F, K) 
~
+ (G,Y)]

~
∗  (H,D)=[(F,K)

~
∗(H,D)] 

~
+ [(G, Y)

~
∗  (H,D)]. 

6) [(F, K) 
~
γ  (G,Y)]

~
∗  (H,D)=[(F,K)

~
∗(H,D)] 

~
γ  [(G, Y)

~
∗  (H,D)]. 

7) [(F, K) 
~
∗  (G,Y)]

~
∗  (H,D)=[(F,K)

~
∗(H,D)] 

~
∗  [(G, Y)

~
∗  (H,D)]. 

8) [(F, K) 
~
θ  (G,Y)]

~
∗  (H,D)=[(F,K)

~
∗(H,D)] 

~
θ [(G, Y)

~
∗  (H,D)]. 

9) [(F,K)
~
λ  (G,Y)]

~
∗  (H,D)=[(F,K) 

~
∗ (H,D)] 

~
λ  [(G, Y)

~
∗ (H,D)]. 

Corollary 4.3.1. (SE(U),
~
∩,

~
∗) and (SE(U),

~
∪,

~
∗) are additive idempotent,

non-commutative (right) near-semirings without zero and unity under 
certain conditions. 

Proof:  Yavuz (2024) showed that (SE(U),
~
∩) and (SE(U),

~
∪) are

idempotent, non-commutative semigroups (that is a band) under the 
condition T∩Z’∩M =∅, where (F,T), (G,Z) and (H,M) are soft sets over U.  

By Theorem 3.3.1, (SE(U),
~
∗ )  is a non-commutative and not idempotent

semigroup under the condition T∩Z’∩M = T∩Z∩M =∅, where (F,T), (G,Z) 

and (H,M) are soft sets over U.  Besides,  by Proposition 4.3, 
~
∗  distributes 

over  
~
∩ and 

~
∪ from RHS under the condition T∩Z∩M=∅.  Consequently,

(SE(U),
~
∩,

~
∗  and (SE(U),

~
∪,

~
∗) are additive idempotent non-commutative

(right) near-semiring without zero and unity under certain conditions. 

Corollary 4.3.2. (SE(U),
~
\ ,

~
∗), (SE(U),

~
∆,

~
∗), (SE(U),

~
+,

~
∗ ), (SE(U),

~
γ ,

~
∗ ),

(SE(U),
~
∗ ,

~
∗ ), (SE(U),

~
θ ,

~
∗) are all not idempotent and non-commutative

(right) near-semirings without zero and without unity under the 
condition T∩Z’∩M = T∩Z∩M =∅, where (F,T), (G,Z) and (H,M) are soft sets 
over U. Here, note that Yavuz (2024) showed that the first operation is 

associative in SE(U) under the condition T∩Z’∩M=T∩Z∩M=∅ (for 
~
∆,

under the condition T∩Z’∩M=∅). 

5. CONCLUSION 

Parametric techniques like soft sets and soft operations are useful when 
dealing with uncertain data. Introducing new soft operations and figuring 
out their algebraic properties and uses provides new insights into 
handling parametric data problems. This work presents a unique kind of 
soft set operation in this respect. By putting forward a new soft set 
operation that we call the "soft binary piecewise star operation" and 
closely examining the algebraic structures that underlie it as well as other 
new soft set operations in the class of soft sets, we hope to make a 
significant contribution to the area of soft set theory. Specifically, the 
distributions of the soft binary piecewise star operation over different 
kinds of soft set operations are analyzed, and the whole algebraic 
properties of this novel soft set operation are investigated in detail. A 
thorough examination of the algebraic structures produced by the set of 
soft sets with these operations is given, taking into account the 
distribution laws and the algebraic characteristics of the soft set 
operations. We show that the collection of soft sets over the universe with 
the soft binary piecewise star operation, and other forms of soft sets, form 
different significant algebraic structures, such as semirings and near-
semirings.  

• (SE(U),
~
∗ ) is a noncommutative, and not idempotent semigroup under

certain conditions, moreover (SE(U),
~
∗) is a right-left system under 

certain conditions. 

• (SE(U),∪R,
~
∗), (SE(U),∩R,

~
∗) are additive commutative and additive 

idempotent (right) near-semirings without zero and unity under 
certain conditions. 

• (SE(U), ∪ε,
~
∗) and (SE(U),∩ε,

~
∗) are additive commutative and additive

idempotent (right) near-semirings with zero, but without unity and 
zero symmetric property under certain conditions.  

• (SE(U),\ε,
~
∗ ), (SE(U),∆ε,

~
∗), (SE(U),+ε,

~
∗), (SE(U),γε,

~
∗ ), (SE(U),λε,

~
∗ ),

(SE(U),∗ε,
~
∗), (SE(U),θε,

~
∗) are additive commutative not idempotent

(right) near-semirings with zero but without unity and zero symmetric 
property under certain conditiosn. 

• (SE(U), ∪ε,
~
∗) and (SE(U), ∩ε,

~
∗ )  are additive commutative and additive

idempotent semirings without zero and unity under certain conditions. 

• (SE(U),
~
∩,

~
∗ ) and (SE(U),

~
∪,

~
∗ ) are additive idempotent, non-

commutative (right) near-semirings without zero and unity under 
certain conditions. 

• (SE(U),
~
\ ,

~
∗ ), (SE(U),

~
∆,

~
∗), (SE(U),

~
+,

~
∗), (SE(U),

~
γ ,

~
∗), (SE(U),

~
∗ ,

~
∗),

(SE(U),
~
θ ,

~
∗ ) are all noncommutative, and not idempotent (right) near-

semirings without zero and unity under certain conditions. 

We obtain a complete understanding of their use by studying new soft set 
operations and the algebraic structures of soft sets. In addition to offering 
novel examples of algebraic structures, this might further the fields of soft 
set theory and classical algebraic literature. The goal of this study is to get 
the particular algebraic structures that the soft binary piecewise star 
operation forms in combination with other kinds of soft set operations in 
the collection of soft sets defined over a universal set. This kind of 
thorough investigation should improve our understanding of how soft 
sets are used. Subsequent investigations might explore in detail more 
variations of soft binary piecewise operations and their corresponding 
properties and distributions. 
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