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ARTICLE DETAILS ABSTRACT

Article History: This study evaluates the performance of various fuzzy membership functions (MFs) in predicting volume and
bedload rate using sediment data from a bathymetric survey at Ikpoba Dam. Twelve cases with different
membership functions: Gaussian, triangular, trapezoidal, and bell-shape were tested across different epochs.
The models were assessed based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-
squared (R?) values for both training and testing datasets. The Gaussian membership function (Gaussmf),
with 7 membership functions and 200 training epochs, outperformed the others, achieving the lowest RMSE
of 0.568 (training) and 0.579 (testing), MAE of 0.437 (training) and 0.445 (testing), and highest R? values of
0.914 (training) and 0.932 (testing) for volume prediction. For bedload rate, it also achieved the lowest RMSE
of 0.509 (training) and 0.517 (testing), MAE of 0.391 (training) and 0.397 (testing), and highest R? values of
0.9354 (training) and 0.9496 (testing). In contrast, the Trapezoidal membership function (Trapmf) showed
the worst performance with RMSE values of 0.874 (training) and 0.905 (testing), MAE values of 0.652
(training) and 0.677 (testing), and R* values of 0.812 (training) and 0.804 (testing). These results emphasize
the significance of membership function selection and training epochs in optimizing fuzzy models for
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environmental and geospatial applications.
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1. INTRODUCTION

In the field of fuzzy logic and neural networks, the Co-active Neuro-Fuzzy
Inference System (CANFIS) model is a powerful tool that combines the
strengths of both techniques to handle uncertainty and imprecision in data
(Singh et al.,, 2028). The CANFIS relies on the concept of membership
functions, which define how each point in the input space is mapped to a
membership value between 0 and 1. The choice of membership functions
plays a crucial role in the performance of a CANFIS model, as it directly
influences the system's ability to approximate nonlinear functions. In most
cases, researchers are faced with challenge of finding the best choice of
membership function that will succinctly describe the real-life scenario
intended to be modeled. In that case, the comparison of various
membership functions for the CANFIS model could reveals significant
insight into their effectiveness and adaptability. Research indicates that
different membership functions can substantially influence the
performance of CANFIS in various applications.

For instance, some researchers highlighted that triangular and trapezoidal
membership functions yield distinct results in terms of accuracy and
computational efficiency, with trapezoidal functions often providing
better performance in complex datasets (Kabir and Kabir, 2021). Some
researcher further emphasise the importance of selecting appropriate
membership functions, noting that Gaussian functions can enhance the
model's ability to generalise from training data, thus improving predictive
accuracy (Talpur et al,, 2017). In other findings suggest that the choice of
membership function also affects the convergence speed of the learning
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algorithm, with some functions leading to faster adaptation in dynamic
environments (Pancardo et al., 2021). However, a group researcher points
out that while it is true that certain membership functions may excel in
specific scenarios, their performance can vary significantly based on the
nature of the input data and the problem domain (Narayan et al,, 2021).

According to a study, a hybrid approach integrating a combination of
multiple membership functions, may offer a more robust solution,
allowing for greater flexibility and improved outcomes across diverse
applications (Joseph et al, 2023). The selection of the appropriate
membership function is crucial in designing a CANFIS model that
accurately captures the underlying patterns in the data (Scherer, 2012).
Each of these functions offers unique advantages depending on the specific
requirements of the application, such as the nature of the data, the desired
smoothness of transitions, and computational constraints. The selection of
the appropriate membership function is a critical design decision in
CANFIS models, as it impacts both the accuracy and interpretability of the
system (Tomasiello et al,, 2023).

While each membership function has its strengths, characteristics, and
suitability for different applications, the choice between them depends on
the specific application requirements. For instance, the bell-shaped and
Gaussian functions are preferred in applications requiring smooth
transitions and high precision, while the triangular and trapezoidal
functions are more suitable for systems where simplicity and
computational efficiency are critical (Gupta et al, 2023). Research
suggests that in applications like pattern recognition and control systems,
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where input data can vary widely, Gaussian and bell-shaped functions tend
to perform better due to their smooth and natural representation of data
(Jankova, et al,, 2022). On the other hand, in environments where quick
decisions are needed, such as in embedded systems or real-time fault
detection, the triangular and trapezoidal functions may offer the necessary
speed and simplicity (Sadollah, 2018).

The CANFIS model is a hybrid computational framework that synergises
the learning capabilities of neural networks with the reasoning power of
fuzzy logic. Central to its functioning are membership functions, which
map input values to degrees of membership, thus enabling the system to
handle uncertainty and imprecision effectively (Liu and Vuillemot, 2023).
This paper aims to examines four widely used membership functions viz:
the bell-shape, the Gaussian, the triangular, and the trapezoidal, with a
view to selecting the best performing type for implementation in CANFIS
model for sediment deposited in a reservoir in Nigeria.

2. MATERIALS AND METHODS

2.1 Study Area, Data Availability and Data Transformation

The geographical location of the study area in UTM Zone 31 North are:
(787709.409 mE; 709586.339 mN, and 793326.993mE; 705212.341 mN).
By Koppen classification, Benin City has a tropical savanna climate with an
average annual rainfall of 2, 681 mm. From 2017 to 2019, data was
collected from Ikpoba dam by repetitive bathymetric surveys. Records
were taken each time data was available for other predetermined geo-
environmental factors for an extended period of three years. Irrelevant
and incomplete data points were filtered, and the refined dataset was re-
sampled to 480 data points. The sum of computed sediment at the dam
was 840127.346 m3. Other dominant geo-environmental variables
contributing to sedimentation like rainfall, topography inlet velocity etc.
were made to undergo transformation and conversion into usable format
for modelling. Figure 1 show the boundary of the study location and the
catchment area.
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Figure 1: Map of the study area catchment

2.2 Conceptual Framework

The conceptual frameworkin the flowchartin Figure 2, outlines a stepwise
decision-making and process management structure. It begins with input,

'

S

followed by sequential activities that include decision points to evaluate
conditions. Based on the decisions, it branches into alternative paths or
loops back for iterative actions. The framework concludes with a defined
endpoint that ensures the process is goal-oriented and dynamic.
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Figure 2: Conceptual diagram of the study.

2.3 Data Cleaning and Testing

A Multicollinearity test using Variance Inflation Factor (VIF) confirmed

that all variables were suitable for modeling, with no signs of collinearity
(VIF > 5) (Kutner, 2004). Missing values were imputed, and incomplete
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records were removed. The data was standardized to ensure equal
contribution from all variables, while outliers were managed using
appropriate transformations to prevent skewed results. Noise was filtered
to improve accuracy.

The dataset was split into 75% for training and 25% for testing, ensuring
unbiased evaluation. Necessary transformations, including Log, Square,
Cubic, Box-Cox, and Yeo-Johnson, were applied to address non-linearity,
skewness, and variance issues to improve the model performance.
Equations 1-5 show the transformations applied. The transformations are
explained a bit further.

The general logarithmic transformation model is typically represented by
equation 1. It was used to stabilizes variance and makes the data closer to
normal distribution for the variables.

Y =log(Y)

Where: Y: represents the original data or variable to be transformed

€8]

The square transformation was adopted amplifies check the differences
between larger values in the variables especially when the variance
increases with the variable's magnitude. This model is represented by
equation 2.

Y =Y?

Where: Y: is the original data or variable to be transformed

()

For a dependent variable Y, the cubic transformation is defined by
equation 3. This model was particularly useful in this study as it caters for
situations where relationships in variables are inherently cubic in nature.

Y =Y°

Where: Y: is the original data or variable to be transformed

(3)

The Box-Cox transformation is defined as in equation 4. This was adopted
in cases where we have data that are strictly positive and the study

required a flexible approach to normalize and stabilize the variance.

A—
. YTl,ifﬂ;éO

Y

log(Y),if A1=0 @

Where: A, represents the transformation parameter

Yeo-Johnson transformation helps make data more symmetric and
reduces skewness, which can improve model performance and
interpretability. When the data contains zero or negative values and
normalization is required, this model is capable of handling such scenario.
Equation 5 represent the model.

(Y +D* -1
T
log (Y +1),
—((-Y +D** 1)
2—-1
—log(-Y +1),

if L=0andY >0
ifA=0andY >0

, ifA=2andY <0
ifA=2andY <0

)

The groupings like (5,5,5,5,5,5,5), or (7,7,7,7,7,7,7) represent the number
of MFs used for each input variable. These configurations are typically
achieved by adjusting the fuzzy system's parameters, and the system uses
epochs (iterations) during training to refine the positions, shapes, and
spans of the MFs. More epochs allow the system to experiment with
different configurations and improve its predictive accuracy, selecting the
optimal number of MFs based on error metrics such as RMSE, MAE, or R?
as will be presented later in the results section. Table 1 shows the
summary of the input parameters after some modification processes.

Table 1: Brief description of input parameters and MF

Variable A No. of .
Min Max Description
Name MF
rainfall 32.4905 1017.6 7 Refers to the height of the V\{ater la_yer covering the ground in a
period of time.
L-S factor 0.0339 43.277 7 Length-slope factor describes tbe effect of topography on soil
erosion.
depth 0.3571 8.2138 7 Mean distances from the bottom of the eroded surface profile.
inletvel 0.0128 1.2429 7 Inlet velocity is the gain ofmast?rgisuspended sediment by unit of
psize 0.0748 39.188 7 Weighing capacity of eroded soil particles.
wi 0.0022 3.4357 7 Topographic wetness mdex. 1dent1f1e_s the potential of runoff
generation locations.

Note: node_id, means grid node; inlet. Vel., means inlet velocity; p. size, means particle size (dso); twi, means topographic wetness index

2.4 CANFIS Model Development

To develop a CANFIS model in this research for the prediction of
sedimentation in a reservoir, the following data were sourced:
hydrological data, including rainfall, streamflow, and water levels.

MEMBERSHIP FUNCTIONS

Sediment data such as particle size distribution and bathymetric data,
geographical and geological information like watershed characteristics
and soil types are carefully gathered and laboratory analysis conducted to
determine the needed variables. Seven input variables and two output
variables are represented in the CANFIS network architecture in Figure 3.

TN NGy

(on

INPUTS

Figure 3: CANFIS architecture with multiple input multiple output (MIMO)
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Tables 2 and 3 show the excerpts from raw data and normalised data for
480 rows by 8 columns. The random selection at grid nodes was

intentional as all data cannot be presented.

Table 2: Excerpt from raw data before transformation was applied

node_id rainfall slope depth inlet. vel. p.- size twi bedload rate volume

976.810 22.064 1.428 0.338 9.273 1.651 1.796 4633.911

2 1017.685 22.666 1.428 0.338 9.273 2.673 1.796 2411.311

3 869.906 25.000 1.428 0.338 9.273 1.457 1.796 2914.542

4 957.944 23.877 1.428 0.338 9.273 1.775 1.796 2096.793

5 838.463 23.328 1.428 0.338 9.273 1.094 1.796 2914.542

6 378.357 19.777 1.428 0.338 9.273 1.325 1.796 3501.644

7 617.319 16.375 1.071 0.350 8.974 0.619 1.977 3229.060

8 855.233 15.251 1.071 0.350 8.974 0.809 1.977 2767.766

9 561.771 15.419 1.071 0.350 8.974 0.639 1.977 3124.221

10 276.693 15.419 1.071 0.350 8.974 0.460 1.977 3795.194

Note: node_id, means grid node; inlet. Vel., means inlet velocity; p. size, means particle size (dso); twi, means topographic wetness index
Table 3: Excerpt from normalised data after applying transformations

node_id rainfall slope depth h‘::;.t' p. size twi be;l;ad volume
346 0.871 0.050 1.000 0.643 0.914 0.149 0.679 0.500
151 0.872 0.050 0.136 0.698 0.411 0.287 1.000 0.229
38 0.257 0.287 0.136 0.193 0.174 0.232 0.220 0.438
255 0.887 0.106 0.136 0.120 0.145 0.153 0.530 0.847
361 0.990 0.040 1.000 0.643 0.914 0.534 0.581 0.131
287 0.553 0.549 0.091 0.488 0.193 0.389 0.090 0.340
170 0.971 0.132 0.136 0.698 0.411 0.284 0.442 0.313
303 0.817 0.225 0.091 0.339 0.222 0.170 0.314 0.369
437 0.790 0.174 1.000 0.643 0.914 0.420 0.669 0.189
291 0.366 0.461 0.227 0.198 0.270 0.214 0.082 0.378

2.5 CANFIS Membership Functions Algorithms

For the proposed model, the following membership functions were taken
into account. Equations 6 - 9 represent each membership function model:

Gaussian MF: The Gaussian membership function is specified by two
{c.o]
parameters
2
(x=¢)

f(x,c,0)= _
guassmf (x,c,o) =exp 5o

(6)
c is the center of the MF, and o determines the width of the MF axons.

Triangular MF: A Triangular membership function is defined by three

{a,b,c},

a,bandc

Ha(X)

andCrepresents lower and upper boundary respectively where

membership degree is 0 while b

L (X)) =trimf (x,a,b, )

parameters where represents the

a

coordinates of the three vertices of in a fuzzy set A. Points

is the centre where membership degree

0 if xa
X728 it a<x<b
_ b-a
X if b<x<c
C_
0 if c<x

(7

Trapezoidal MF: A Trapezoidal membership function is specified by four

parameters as {a’ b, C’ d } H
0 if x<a
X728 4t a<x<b
b-a
trapmf (x,a,b,c,d)=4 1 if b<x<c
a-x if c<x<d
d-c
0 if d<x
=max| min E,l,ﬂ,o
b-a d-c

(8)

Bell-Shape MF: For a bell-shaped membership function, A s given as:

1

:1+[(x—ci)/ai]2b‘

My, i=12

)

X {a.b.c}
Where # is value of input to i node, and are the adaptable
parameters of membership function of this set. These conditioner

A

parameters always change the bell-shape function on linguistic label
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2.6 CANFIS Training Process squares methods. The Forward training and the backward pass uses

. . . . . equation 10.
CANFIS learn with hybrid algorithm combining gradient descent and least

W, W,
f=rt f4—2f
W, + W, W, + W,

f =W(pX+qy+r)+W(p,x+a,y+r,),
f= (V_le) P, +(V_V1y)q1 +(V_V1) n +(V_V2X) P, +(V_V2y)q2 +(VT/2)I’2

(10

pl'ql’ IPl’ pz’qz,and r2

2.7 CANFIS Production Rules

where are the linear consequent parameters.

To fine-tune the parameters of a (FIS), CANFIS uses ANN learning techniques. The fuzzy production rules are in these orders: fuzzification, aggregation,
activation, accumulation, and difzzification. Figure 4 shows a typical fuzzy production rule interface.

Production rules

) ifx in Tth THENyin T ]
Fuzzifier - /'I Aggregation D efuzzification
-~
Xi 7
~
,| ifx in T@ THENyin T
Xz - | : ’
22 . .
~
T ¥
LENN -~ )| ifx inTth THENyin T | » >
Xa , ) -
Xn = ifx, in TMTHENyin7, |-
’ T~ |
~a| ifx in T® THENyin T
Figure 4: Fuzzy production rule system
An excerpt of the fuzzy production rules from this research is shown in Figure 5.
1] 2] [,3] [,4] (5] [.6]  [,7] [L,8] [.9] [.1e] [,11] [,12] [:13] [,14] [,15] [,18]
[1,] "IF" "rainfall® "is" "large”  "and" "slope" "is" "v.small” “and" "depth" “is" "v.small" "and" “inletvel” "is" “smal
[2,] "IF" "rainfall" "is" "wv.large" "and" "slope” "is" "v.small" "and" "depth" “is" "v.small" "and" "inletvel" "is" "smal
[3,] "IF" "rainfall" "is" "large"  "and" "slope” "is" "v.small" “and" "depth" “is" "v.small" "and" "inletvel" "is" "smal
[4,] "IF" "rainfall” "is" "medium” "and" "slope” "is" "v.small" "and" "depth" “is" "v.small" "and" "inletvel" "is" "smal

[5,] "IF" "rainfall" "is" "large" "and" "slope" "is" "v.small" “and" "depth” "is" "

.small” "and" "inletvel" "is" "v.sr

=

winmoom

[6,] "IF" "rainfall" "is" "v.large" "and" "slope” "is" "v.small" "and" "depth" “is

.small" "and" "inletvel" "is" "smal

=

[7,] "IF" "rainfall® "is" "v.large" "and" "slope” "is" "v.small" "and" "depth" “is" "v.small" "and" "inletvel" "is" "smal
[8,] "IF" "rainfall” "is" "large" "and" "slope” "is" "v.small" “and” "depth” "is" .small” “and" "inletvel” "is" “smal
[9,] "IF" "rainfall” "is" "large" "and" "slope” "is" "v.small" “and” "depth” "is" .small”  “and" "inletvel” "is" “smal
[18,] "IF" "rainfall" "is" "v.large" “and" "slope” "is" "v.small" “and” "depth” "is" “v.small” “and" "inletvel” "is" "lary

= = = = = = =

[11,] "IF" "rainfall" "is" "medium” “and" "slope” "is" "small”  “and” "depth” "is small” "and" “inletvel® "is" Mv.se

[12,] "IF" "rainfall" "is" "v.large" “and" "slope” "is" "small”  “and” "depth” "is"

am winmoow

[13,] "IF" "rainfall" "is" “wv.large" "and" "slope” "is" "v.small" “and" "depth” "is

[14,] "IF" "rainfall" "is" “vv.large" "and" "slope” "is" "wv,small" "and" "depth” "is" "vv.large" "and" "inletvel" “"is" "lary

.small" "and" "inletvel” "is" "sma]

.small" "and" "inletwel" "is" "lary

Figure 5: Excerpt of CANFIS fuzzy production rules.

138 2
=N(t -
LSy

2.8 Model Performance Metrics

In any model development process, it is important to define the criteria by RMSE =
which the performance of the model and its prediction accuracy is
evaluated, (Legates and McCabe, 1999). The following criteria were used
in examining the performance metrics of the models which are commonly
used for regression modelling.

(1

Where: k is the actual value, k is the predicted value produced by the
2.8.1 Root mean squared error (RMSE) m

model, and is the total number of observations.
This node estimates the residual between the actual value and predicted

value. A model has better performance if it has a smaller RMSE. Equation 2.8.2 Means absolute error (MAE)

11 1s used for this purpose. It's the absolute difference between the estimated value and true value.
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With equation 12 this can be achieved.

1 m
MAE=—Z|tk—yk|
m =

(12)

Where: k is the actual value, yk is the predicted value produced by the

model, and is the total number of observations.

2.8.3 Correlation coefficient (R)

This criterion reveals the strength of relationships between actual values
and predicted values. The correlation coefficient has a range from 0 to 1,
and a model with a higher R means it has a better performance. This was
achieved using equation 13.

R — k=1
n —\2 n 2
2 (=T 2 (% -Y)
k=1 k=1 (13)
— 1 1
t==>t V=22
Where: M and = are the avera 1 f
: ge values o
t
k and yk respectively.

3. RESULTS AND DISCUSSIONS

The result obtained from the different membership functions with their
respective training and testing errors for the output parameters are
displayed in Table 4.

Table 4: The CANFIS results from combinations of shape and number of MF
RMSE MAE R2

H No MF ME o Noof 2w, @ S DU

a3 Pair type epochs g 2 = = 2 5 2 g 2 =l

; = ;{ = ; m ﬁ m ; m g <3

1 (5,5,5,5,5,5,5) Gaussmf 100 0.7967 0.8172 0.56207 0.5633 0.8720 0.8854

" 2 (5,5,5,5,5,5,5) Trimf 100 0.8460 0.8362 0.63920 0.6648 0.8509 0.8487
E 3 (5,5,5,5,5,5,5) Trapmf 100 0.8738 0.9054 0.65229 0.6767 0.8123 0.8035
é 4 (7,7,7,7,7,7,7) Gaussmf 200 0.5683 0.5799 0.43649 0.4454 0.9139 0.9326
= 5 (7,7,7,7,7,7,7) Trimf 200 0.6330 0.6832 0.49637 0.4987 0.8925 0.8975
6 (7,7,7,7,7,7,7) Bellmf 200 0.7632 0.7821 0.53390 0.5493 0.8633 0.8591

7 (5,5,5,5,5,5,5) Gaussmf 100 0.6238 0.6300 0.57383 0.5612 0.9113 0.9047

% 8 (5,5,5,5,5,5,5) Trimf 100 0.7653 0.7972 0.59223 0.6722 0.8356 0.8399
'r'g 9 (5,5,5,5,5,5,5) Trapmf 100 0.8098 0.8152 0.62292 0.6430 0.8473 0.8570
E 10 (7,7,7,7,7,7,7) Gaussmf 200 0.5088 0.5165 0.39074 0.3967 0.9354 0.9496
E 11 (7,7,7,7,7,7,7) Trimf 200 0.5451 0.5573 0.46559 0.4830 0.9011 0.9274
12 (7,7,7,7,7,7,7) Bellmf 200 0.5970 0.6118 0.53710 0.5863 0.8972 0.9053

3.1 Discussions

Table 4 presents a comparison of the performance of different
membership functions (MFs) for predicting volume and bedload rate,
using different configurations. The performance is evaluated using three
key metrics: Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), and R-squared (R?) for both training and testing datasets.

3.1.1 Volume Prediction Performance

For predicting volume, Gaussian Membership Function (Gaussmf), using 7
membership functions (MFs) and trained over 200 epochs, consistently
outperforms all other membership functions. This configuration resulted
in the lowest RMSE values for both training (0.5683) and testing (0.5799).
The MAE values were also the lowest for both training (0.43649) and
testing (0.4454), and it achieved the highest R? values of 0.9139 for
training and 0.9326 for testing. This indicates that the model explains a
high percentage of the variance in the data, and the predictions are quite
accurate.

On the other hand, Trapezoidal Membership Function (Trapmf), with 5
membership functions and trained for 100 epochs, performed the worst.
It had the highest RMSE (0.8738 for training and 0.9054 for testing) and
MAE (0.65229 for training and 0.6767 for testing). The R? values were also
the lowest, with 0.8123 for training and 0.8035 for testing, suggesting poor
explanatory power and a less accurate model.

The Triangular Membership Function (Trimf), with 5 membership
functions and 100 epochs, performed somewhat better than Trapmf but
still lagged behind Gaussmf. Its RMSE (0.846 for training and 0.836 for
testing) and MAE (0.639 for training and 0.665 for testing) were higher
than those of Gaussmf, and its R? values (0.851 for training and 0.849 for

testing) were lower. Besides, increasing the number of membership
functions from 5 to 7 and training the model for 200 epochs led to
noticeable improvements in performance for both Gaussmf and Trimf,
with Gaussmf achieving the best results overall.

3.1.2 Bedload Rate Prediction Performance

The performance for predicting bedload rate follows a similar pattern.
Gaussmf, using 7 membership functions and trained over 200 epochs,
again emerges as the best-performing model. It recorded the lowest RMSE
values (0.509 for training and 0.517 for testing) and the lowest MAE values
(0.391 for training and 0.397 for testing). This configuration also achieved
the highest R? values (0.935 for training and 0.949 for testing), suggesting
that the model is highly accurate and explains the variance in the data well.

Trapmf, with 5 membership functions and trained for 100 epochs, had the
highest RMSE (0.809 for training and 0.815 for testing) and the highest
MAE (0.623 for training and 0.643 for testing), leading to lower R? values
(0.847 for training and 0.857 for testing), indicating poorer predictive
performance. Trimf, with 5 membership functions and trained for 100
epochs, also performed better than Trapmf but worse than Gaussmf. Its
RMSE values were 0.765 for training and 0.797 for testing, with MAE
values of 0.592 for training and 0.672 for testing. Its R? values were 0.836
for training and 0.839 for testing, which are lower than those of Gaussmf.

4.. CONCLUSIONS

Based on the findings from this study, it can be concluded that the optimal
selection of membership functions plays a crucial role in improving the
performance of Co-active Adaptive Neuro-Fuzzy Inference System
(CANFIS) models for reservoir sedimentation prediction in Nigeria.
Among the different membership functions tested, the Gaussian
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membership function (Gaussmf) consistently provided the most accurate
predictions for both volume and bedload rate, especially when used with
7 membership functions (MFs) and trained over 200 epochs. This
configuration led to higher R? values, indicating stronger explanatory
power and more reliable results. On the other hand, fewer MFs and fewer
training epochs resulted in less accurate predictions, with higher errors
and lower R? values. Therefore, for optimal model accuracy in predicting
reservoir sedimentation, using the Gaussian function with 7 MFs and
training for 200 epochs is recommended. This approach can be effectively
applied to improve the management of reservoir sedimentation in Ikpoba
dam, Nigeria and similar environments.
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