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This study evaluates the performance of various fuzzy membership functions (MFs) in predicting volume and 
bedload rate using sediment data from a bathymetric survey at Ikpoba Dam. Twelve cases with different 
membership functions: Gaussian, triangular, trapezoidal, and bell-shape were tested across different epochs. 
The models were assessed based on Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-
squared (R²) values for both training and testing datasets. The Gaussian membership function (Gaussmf), 
with 7 membership functions and 200 training epochs, outperformed the others, achieving the lowest RMSE 
of 0.568 (training) and 0.579 (testing), MAE of 0.437 (training) and 0.445 (testing), and highest R² values of 
0.914 (training) and 0.932 (testing) for volume prediction. For bedload rate, it also achieved the lowest RMSE 
of 0.509 (training) and 0.517 (testing), MAE of 0.391 (training) and 0.397 (testing), and highest R² values of 
0.9354 (training) and 0.9496 (testing). In contrast, the Trapezoidal membership function (Trapmf) showed 
the worst performance with RMSE values of 0.874 (training) and 0.905 (testing), MAE values of 0.652 
(training) and 0.677 (testing), and R² values of 0.812 (training) and 0.804 (testing). These results emphasize 
the significance of membership function selection and training epochs in optimizing fuzzy models for 
environmental and geospatial applications. 
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1. INTRODUCTION

In the field of fuzzy logic and neural networks, the Co-active Neuro-Fuzzy 
Inference System (CANFIS) model is a powerful tool that combines the 
strengths of both techniques to handle uncertainty and imprecision in data 
(Singh et al., 2028). The CANFIS relies on the concept of membership 
functions, which define how each point in the input space is mapped to a 
membership value between 0 and 1. The choice of membership functions 
plays a crucial role in the performance of a CANFIS model, as it directly 
influences the system's ability to approximate nonlinear functions. In most 
cases, researchers are faced with challenge of finding the best choice of 
membership function that will succinctly describe the real-life scenario 
intended to be modeled. In that case, the comparison of various 
membership functions for the CANFIS model could reveals significant 
insight into their effectiveness and adaptability. Research indicates that 
different membership functions can substantially influence the 
performance of CANFIS in various applications.  

For instance, some researchers highlighted that triangular and trapezoidal 
membership functions yield distinct results in terms of accuracy and 
computational efficiency, with trapezoidal functions often providing 
better performance in complex datasets (Kabir and Kabir, 2021). Some 
researcher further emphasise the importance of selecting appropriate 
membership functions, noting that Gaussian functions can enhance the 
model's ability to generalise from training data, thus improving predictive 
accuracy (Talpur et al., 2017). In other findings suggest that the choice of 
membership function also affects the convergence speed of the learning 

algorithm, with some functions leading to faster adaptation in dynamic 
environments (Pancardo et al., 2021). However, a group researcher points 
out that while it is true that certain membership functions may excel in 
specific scenarios, their performance can vary significantly based on the 
nature of the input data and the problem domain (Narayan et al., 2021).  

According to a study, a hybrid approach integrating a combination of 
multiple membership functions, may offer a more robust solution, 
allowing for greater flexibility and improved outcomes across diverse 
applications (Joseph et al., 2023). The selection of the appropriate 
membership function is crucial in designing a CANFIS model that 
accurately captures the underlying patterns in the data (Scherer, 2012). 
Each of these functions offers unique advantages depending on the specific 
requirements of the application, such as the nature of the data, the desired 
smoothness of transitions, and computational constraints. The selection of 
the appropriate membership function is a critical design decision in 
CANFIS models, as it impacts both the accuracy and interpretability of the 
system (Tomasiello et al., 2023). 

While each membership function has its strengths, characteristics, and 
suitability for different applications, the choice between them depends on 
the specific application requirements. For instance, the bell-shaped and 
Gaussian functions are preferred in applications requiring smooth 
transitions and high precision, while the triangular and trapezoidal 
functions are more suitable for systems where simplicity and 
computational efficiency are critical (Gupta et al., 2023). Research 
suggests that in applications like pattern recognition and control systems, 
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where input data can vary widely, Gaussian and bell-shaped functions tend 
to perform better due to their smooth and natural representation of data 
(Janková, et al., 2022). On the other hand, in environments where quick 
decisions are needed, such as in embedded systems or real-time fault 
detection, the triangular and trapezoidal functions may offer the necessary 
speed and simplicity (Sadollah, 2018). 

The CANFIS model is a hybrid computational framework that synergises 
the learning capabilities of neural networks with the reasoning power of 
fuzzy logic. Central to its functioning are membership functions, which 
map input values to degrees of membership, thus enabling the system to 
handle uncertainty and imprecision effectively (Liu and Vuillemot, 2023). 
This paper aims to examines four widely used membership functions viz: 
the bell-shape, the Gaussian, the triangular, and the trapezoidal, with a 
view to selecting the best performing type for implementation in CANFIS 
model for sediment deposited in a reservoir in Nigeria. 

2. MATERIALS AND METHODS 

2.1 Study Area, Data Availability and Data Transformation  

The geographical location of the study area in UTM Zone 31 North are: 
(787709.409 mE; 709586.339 mN, and 793326.993mE; 705212.341 mN). 
By Koppen classification, Benin City has a tropical savanna climate with an 
average annual rainfall of 2, 681 mm. From 2017 to 2019, data was 
collected from Ikpoba dam by repetitive bathymetric surveys. Records 
were taken each time data was available for other predetermined geo-
environmental factors for an extended period of three years. Irrelevant 
and incomplete data points were filtered, and the refined dataset was re-
sampled to 480 data points. The sum of computed sediment at the dam 
was 840127.346 m3. Other dominant geo-environmental variables 
contributing to sedimentation like rainfall, topography inlet velocity etc. 
were made to undergo transformation and conversion into usable format 
for modelling. Figure 1 show the boundary of the study location and the 
catchment area. 

 

Figure 1: Map of the study area catchment 

2.2 Conceptual Framework 

The conceptual framework in the flowchart in Figure 2, outlines a stepwise 
decision-making and process management structure. It begins with input, 

followed by sequential activities that include decision points to evaluate 
conditions. Based on the decisions, it branches into alternative paths or 
loops back for iterative actions. The framework concludes with a defined 
endpoint that ensures the process is goal-oriented and dynamic.

 

Figure 2: Conceptual diagram of the study. 

2.3 Data Cleaning and Testing 

A Multicollinearity test using Variance Inflation Factor (VIF) confirmed 

that all variables were suitable for modeling, with no signs of collinearity 
(VIF > 5) (Kutner, 2004). Missing values were imputed, and incomplete 
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records were removed. The data was standardized to ensure equal 
contribution from all variables, while outliers were managed using 
appropriate transformations to prevent skewed results. Noise was filtered 
to improve accuracy. 

The dataset was split into 75% for training and 25% for testing, ensuring 
unbiased evaluation. Necessary transformations, including Log, Square, 
Cubic, Box-Cox, and Yeo-Johnson, were applied to address non-linearity, 
skewness, and variance issues to improve the model performance. 
Equations 1–5 show the transformations applied. The transformations are 
explained a bit further. 

The general logarithmic transformation model is typically represented by 
equation 1. It was used to stabilizes variance and makes the data closer to 
normal distribution for the variables.  

' log( )Y Y=
                   (1) 

Where: Y: represents the original data or variable to be transformed 

The square transformation was adopted amplifies check the differences 
between larger values in the variables especially when the variance 
increases with the variable's magnitude. This model is represented by 
equation 2. 

' 2Y Y=                    (2) 

Where: Y: is the original data or variable to be transformed 

For a dependent variable Y, the cubic transformation is defined by 
equation 3. This model was particularly useful in this study as it caters for 
situations where relationships in variables are inherently cubic in nature. 

' 3Y Y=                    (3) 

Where: Y: is the original data or variable to be transformed 

The Box-Cox transformation is defined as in equation 4. This was adopted 
in cases where we have data that are strictly positive and the study  

required a flexible approach to normalize and stabilize the variance. 

'

1
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Y
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




 −


= 
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Where: λ, represents the transformation parameter  

Yeo-Johnson transformation helps make data more symmetric and 
reduces skewness, which can improve model performance and 
interpretability. When the data contains zero or negative values and 
normalization is required, this model is capable of handling such scenario. 
Equation 5 represent the model. 
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The groupings like (5,5,5,5,5,5,5), or (7,7,7,7,7,7,7) represent the number 
of MFs used for each input variable. These configurations are typically 
achieved by adjusting the fuzzy system's parameters, and the system uses 
epochs (iterations) during training to refine the positions, shapes, and 
spans of the MFs. More epochs allow the system to experiment with 
different configurations and improve its predictive accuracy, selecting the 
optimal number of MFs based on error metrics such as RMSE, MAE, or R² 
as will be presented later in the results section. Table 1 shows the 
summary of the input parameters after some modification processes. 

Table 1: Brief description of input parameters and MF 

Variable 

Name 
Min Max 

No. of 

MF 
Description 

rainfall 32.4905 1017.6 7 
Refers to the height of the water layer covering the ground in a 

period of time. 

L-S factor 0.0339 43.277 7 
Length-slope factor describes the effect of topography on soil 

erosion. 

depth 0.3571 8.2138 7 Mean distances from the bottom of the eroded surface profile. 

inletvel 0.0128 1.2429 7 
Inlet velocity is the gain of mass of suspended sediment by unit of 

time. 

psize 0.0748 39.188 7 Weighing capacity of eroded soil particles. 

twi 0.0022 3.4357 7 
Topographic wetness index identifies the potential of runoff 

generation locations. 

Note: node_id, means grid node; inlet. Vel., means inlet velocity; p. size, means particle size (d50); twi, means topographic wetness index 

2.4 CANFIS Model Development 

To develop a CANFIS model in this research for the prediction of 
sedimentation in a reservoir, the following data were sourced: 
hydrological data, including rainfall, streamflow, and water levels. 

Sediment data such as particle size distribution and bathymetric data, 
geographical and geological information like watershed characteristics 
and soil types are carefully gathered and laboratory analysis conducted to 
determine the needed variables. Seven input variables and two output 
variables are represented in the CANFIS network architecture in Figure 3.  

 

Figure 3: CANFIS architecture with multiple input multiple output (MIMO) 



Matrix Science Mathematic (MSMK) 9(1) (2025) 19-25 

 

 
Cite The Article: Stephen Olushola Oladosu, Alfred Sunday Alademomi, Samuel Eliza Odonye  (2025). Optimal Membership Function Selection for A Co-Active Adaptive 

Neuro-Fuzzy Inference System Modelling of Reservoir Sedimentation in Nigeria. Matrix Science Mathematic, 9(1): 19-25. 

Tables 2 and 3 show the excerpts from raw data and normalised data for 
480 rows by 8 columns. The random selection at grid nodes was  

intentional as all data cannot be presented. 

Table 2: Excerpt from raw data before transformation was applied 

node_id rainfall slope depth inlet. vel. p. size twi bedload rate volume 

1 976.810 22.064 1.428 0.338 9.273 1.651 1.796 4633.911 

2 1017.685 22.666 1.428 0.338 9.273 2.673 1.796 2411.311 

3 869.906 25.000 1.428 0.338 9.273 1.457 1.796 2914.542 

4 957.944 23.877 1.428 0.338 9.273 1.775 1.796 2096.793 

5 838.463 23.328 1.428 0.338 9.273 1.094 1.796 2914.542 

6 378.357 19.777 1.428 0.338 9.273 1.325 1.796 3501.644 

7 617.319 16.375 1.071 0.350 8.974 0.619 1.977 3229.060 

8 855.233 15.251 1.071 0.350 8.974 0.809 1.977 2767.766 

9 561.771 15.419 1.071 0.350 8.974 0.639 1.977 3124.221 

10 276.693 15.419 1.071 0.350 8.974 0.460 1.977 3795.194 

Note: node_id, means grid node; inlet. Vel., means inlet velocity; p. size, means particle size (d50); twi, means topographic wetness index 

Table 3: Excerpt from normalised data after applying transformations 

node_id rainfall slope depth 
inlet. 

vel. 
p. size twi 

bedload 

rate 
volume 

346 0.871 0.050 1.000 0.643 0.914 0.149 0.679 0.500 

151 0.872 0.050 0.136 0.698 0.411 0.287 1.000 0.229 

38 0.257 0.287 0.136 0.193 0.174 0.232 0.220 0.438 

255 0.887 0.106 0.136 0.120 0.145 0.153 0.530 0.847 

361 0.990 0.040 1.000 0.643 0.914 0.534 0.581 0.131 

287 0.553 0.549 0.091 0.488 0.193 0.389 0.090 0.340 

170 0.971 0.132 0.136 0.698 0.411 0.284 0.442 0.313 

303 0.817 0.225 0.091 0.339 0.222 0.170 0.314 0.369 

437 0.790 0.174 1.000 0.643 0.914 0.420 0.669 0.189 

291 0.366 0.461 0.227 0.198 0.270 0.214 0.082 0.378 

2.5 CANFIS Membership Functions Algorithms 

For the proposed model, the following membership functions were taken 
into account. Equations 6 – 9 represent each membership function model: 

Gaussian MF: The Gaussian membership function is specified by two 

parameters 
 ,c 

 

( )
( )

2

2
, , exp

2

x c
guassmf x c 



 −
= − 

                   (6) 

c  is the center of the MF, and σ determines the width of the MF axons. 

Triangular MF: A Triangular membership function is defined by three 

parameters 
 , , ,a b c

where 
,  and a b c

 represents the 
x

 

coordinates of the three vertices of 
( )A x

 in a fuzzy set A. Points a  

and c represents lower and upper boundary respectively where 

membership degree is 0 while b  is the centre where membership degree 

is 1. 
( ) ( ), , ,A x trimf x a b c =

: 

0  

 

 

0  

if xa

x a
if a x b

b a

c x
if b x c

c b
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 
 

−
  
 −

=  
−  

 −
                                         (7) 

Trapezoidal MF: A Trapezoidal membership function is specified by four 

parameters as 
 , , ,a b c d

: 

( )

0  

 

, , , , 1  

 

0  

if x a

x a
if a x b

b a
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x a d x

b a d c

 − −  
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Bell-Shape MF: For a bell-shaped membership function, iA  is given as: 

( )
2

1
    1,2

1
i i

A b

i i

i
x c a

 = =
+ −                   (9) 

Where x  is value of input to i node, and 
 , ,i i ia b c

 are the adaptable 
parameters of membership function of this set. These conditioner 

parameters always change the bell-shape function on linguistic label iA
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2.6 CANFIS Training Process 

CANFIS learn with hybrid algorithm combining gradient descent and least  

squares methods. The Forward training and the backward pass uses 
equation 10.  

                                                                                      

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2

1 2

1 2 1 2

1 1 1 2 2 2

1 1 1 1 1 1 2 2 2 2 2 2

,

w w
f f f

w w w w

f w p x q y r w p x q y r

f w x p w y q w r w x p w y q w r

= +
+ +

= + + + + +

= + + + + +

}
 
 
 
 
 
 
 

 
 
 
 
 
 
 

    

                            (10) 

where 1 1 1 2 2, , , ,p q r p q
, and 2r  are the linear consequent parameters. 

2.7 CANFIS Production Rules 

To fine-tune the parameters of a (FIS), CANFIS uses ANN learning techniques. The fuzzy production rules are in these orders: fuzzification, aggregation, 
activation, accumulation, and difzzification.  Figure 4 shows a typical fuzzy production rule interface. 

 

Figure 4: Fuzzy production rule system 

An excerpt of the fuzzy production rules from this research is shown in Figure 5.  

 

Figure 5: Excerpt of CANFIS fuzzy production rules. 

2.8 Model Performance Metrics 

In any model development process, it is important to define the criteria by 
which the performance of the model and its prediction accuracy is 
evaluated, (Legates and McCabe, 1999). The following criteria were used 
in examining the performance metrics of the models which are commonly 
used for regression modelling.  

2.8.1 Root mean squared error (RMSE) 

This node estimates the residual between the actual value and predicted 
value. A model has better performance if it has a smaller RMSE. Equation 
11 is used for this purpose. 

               (11) 

Where: is the actual value, is the predicted value produced by the 

model, and  is the total number of observations. 

2.8.2 Means absolute error (MAE) 

It’s the absolute difference between the estimated value and true value. 

( )
2

1

1 m

k k

k

RMSE t y
m =

= −

kt ky

m
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With equation 12 this can be achieved. 

  
                                               (12) 

Where: is the actual value, is the predicted value produced by the 

model, and  is the total number of observations. 

2.8.3 Correlation coefficient (R) 

This criterion reveals the strength of relationships between actual values 
and predicted values. The correlation coefficient has a range from 0 to 1, 
and a model with a higher R means it has a better performance. This was 
achieved using equation 13. 

                                (13) 

Where: and are the average values of

and ky
respectively.  

3. RESULTS AND DISCUSSIONS 

The result obtained from the different membership functions with their 
respective training and testing errors for the output parameters are 
displayed in Table 4.  

Table 4: The CANFIS results from combinations of shape and number of MF 
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1 (5,5,5,5,5,5,5) Gaussmf 100 0.7967 0.8172 0.56207 0.5633 0.8720 0.8854 

2 (5,5,5,5,5,5,5) Trimf 100 0.8460 0.8362 0.63920 0.6648 0.8509 0.8487 

3 (5,5,5,5,5,5,5) Trapmf 100 0.8738 0.9054 0.65229 0.6767 0.8123 0.8035 

4 (7,7,7,7,7,7,7) Gaussmf 200 0.5683 0.5799 0.43649 0.4454 0.9139 0.9326 

5 (7,7,7,7,7,7,7) Trimf 200 0.6330 0.6832 0.49637 0.4987 0.8925 0.8975 

6 (7,7,7,7,7,7,7) Bellmf 200 0.7632 0.7821 0.53390 0.5493 0.8633 0.8591 

F
o

r 
b

ed
lo

ad
 r

at
e 

7 (5,5,5,5,5,5,5) Gaussmf 100 0.6238 0.6300 0.57383 0.5612 0.9113 0.9047 

8 (5,5,5,5,5,5,5) Trimf 100 0.7653 0.7972 0.59223 0.6722 0.8356 0.8399 

9 (5,5,5,5,5,5,5) Trapmf 100 0.8098 0.8152 0.62292 0.6430 0.8473 0.8570 

10 (7,7,7,7,7,7,7) Gaussmf 200 0.5088 0.5165 0.39074 0.3967 0.9354 0.9496 

11 (7,7,7,7,7,7,7) Trimf 200 0.5451 0.5573 0.46559 0.4830 0.9011 0.9274 

12 (7,7,7,7,7,7,7) Bellmf 200 0.5970 0.6118 0.53710 0.5863 0.8972 0.9053 

3.1 Discussions 

Table 4 presents a comparison of the performance of different 
membership functions (MFs) for predicting volume and bedload rate, 
using different configurations. The performance is evaluated using three 
key metrics: Root Mean Squared Error (RMSE), Mean Absolute Error 
(MAE), and R-squared (R²) for both training and testing datasets. 

3.1.1 Volume Prediction Performance 

For predicting volume, Gaussian Membership Function (Gaussmf), using 7 
membership functions (MFs) and trained over 200 epochs, consistently 
outperforms all other membership functions. This configuration resulted 
in the lowest RMSE values for both training (0.5683) and testing (0.5799). 
The MAE values were also the lowest for both training (0.43649) and 
testing (0.4454), and it achieved the highest R² values of 0.9139 for 
training and 0.9326 for testing. This indicates that the model explains a 
high percentage of the variance in the data, and the predictions are quite 
accurate. 

On the other hand, Trapezoidal Membership Function (Trapmf), with 5 
membership functions and trained for 100 epochs, performed the worst. 
It had the highest RMSE (0.8738 for training and 0.9054 for testing) and 
MAE (0.65229 for training and 0.6767 for testing). The R² values were also 
the lowest, with 0.8123 for training and 0.8035 for testing, suggesting poor 
explanatory power and a less accurate model. 

The Triangular Membership Function (Trimf), with 5 membership 
functions and 100 epochs, performed somewhat better than Trapmf but 
still lagged behind Gaussmf. Its RMSE (0.846 for training and 0.836 for 
testing) and MAE (0.639 for training and 0.665 for testing) were higher 
than those of Gaussmf, and its R² values (0.851 for training and 0.849 for 

testing) were lower. Besides, increasing the number of membership 
functions from 5 to 7 and training the model for 200 epochs led to 
noticeable improvements in performance for both Gaussmf and Trimf, 
with Gaussmf achieving the best results overall. 

3.1.2 Bedload Rate Prediction Performance 

The performance for predicting bedload rate follows a similar pattern. 
Gaussmf, using 7 membership functions and trained over 200 epochs, 
again emerges as the best-performing model. It recorded the lowest RMSE 
values (0.509 for training and 0.517 for testing) and the lowest MAE values 
(0.391 for training and 0.397 for testing). This configuration also achieved 
the highest R² values (0.935 for training and 0.949 for testing), suggesting 
that the model is highly accurate and explains the variance in the data well. 

Trapmf, with 5 membership functions and trained for 100 epochs, had the 
highest RMSE (0.809 for training and 0.815 for testing) and the highest 
MAE (0.623 for training and 0.643 for testing), leading to lower R² values 
(0.847 for training and 0.857 for testing), indicating poorer predictive 
performance. Trimf, with 5 membership functions and trained for 100 
epochs, also performed better than Trapmf but worse than Gaussmf. Its 
RMSE values were 0.765 for training and 0.797 for testing, with MAE 
values of 0.592 for training and 0.672 for testing. Its R² values were 0.836 
for training and 0.839 for testing, which are lower than those of Gaussmf. 

4. CONCLUSIONS 

Based on the findings from this study, it can be concluded that the optimal 
selection of membership functions plays a crucial role in improving the 
performance of Co-active Adaptive Neuro-Fuzzy Inference System 
(CANFIS) models for reservoir sedimentation prediction in Nigeria. 
Among the different membership functions tested, the Gaussian 
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membership function (Gaussmf) consistently provided the most accurate 
predictions for both volume and bedload rate, especially when used with 
7 membership functions (MFs) and trained over 200 epochs. This 
configuration led to higher R² values, indicating stronger explanatory 
power and more reliable results. On the other hand, fewer MFs and fewer 
training epochs resulted in less accurate predictions, with higher errors 
and lower R² values. Therefore, for optimal model accuracy in predicting 
reservoir sedimentation, using the Gaussian function with 7 MFs and 
training for 200 epochs is recommended. This approach can be effectively 
applied to improve the management of reservoir sedimentation in Ikpoba 
dam, Nigeria and similar environments. 
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