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This article will begin with the claim that Hamilton spent a great deal of time trying to figure out the three-
dimensional complex numbers. He was never able to accomplish that.  

Complex numbers are in the form a+bi where 'a' is a real part and 'bi' an imaginary with 𝑖 =  √−1  The motive 
behind the claim is that both 𝑖2 and 𝑗2 =  −1; The failure may also have been caused by the lack of a proper 
definition for the field of complex numbers. To address this issue, the author of this article offers his own 
definition of the field of complex numbers with key vectots i,j,k taking values (-1,0,1) respectively Of course 

the field of complex numbers remains unchanged with 𝑋 ⃗⃗  ⃗ = 𝑥 + 𝑦𝑖 + 𝑧𝑗 under transformation becoming 𝑋 ⃗⃗  ⃗ =
𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘 vector but it has it's correspondence in the field of real numbers and it's a vector (-1,0,1) The 
entire process of transition between fields, in author's opinion, is possible thanks to the matrix of 
transformation It's form has already been explored earlier on by the same author in his 'Ternary Mathematics 
and 3D Placement of Logical Elements Justification’. 

Professor Juan Weisz (Doctor of Philosophy, Northeastern University, Argentina) generously proposed the 
concept of field transition, which allows for conversion between imaginary and real numbers without altering 
the field's structure or the relationships between its constituent parts. In essense it should work for all entries 
just the same way it works for the entries of real numbers The fact that serves as the proof is in 𝐴′𝐴 = 1 and 
it works well for both Real and Imaginary number fields which is what we are aiming to prove. 
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1. GENERAL INFORMATION 

To solve the problem outlined in the introduction, one must select a 
variety of methods and resources. For our purposes, these will include 
complex numbers, matrices, combinations, and integers. These essential 
elements must be sufficient enough to solve the problem; the only thing 
lacking is adequate evidence that it will work for both real and imaginary 
numbers. 

We will start with the 'reals' An intentionally chosen vector with 
components of -1,0,1 is used as a reference. The idea behind is that we can 
replace one component for another in 6 different ways making total equal 
to 3! combinations in our search we are going to use just some of the 
aforementioned combinations which should be sufficient enough to 
demonstrate the principle: 

∆ |
−1 0 1
5 7 9
3 6 7

| = 14  

Another matrix will have identical entries except in the first row: 

∆ |
−1 1 0
5 7 9
3 6 7

| = −3  

What has changed and why does we have different outcome? The answer 
is simple It's the reference plane 

In the first example it was a plane which is expressed by (-1,0,1) while in 
the second the plane is different it's (-1,1,0) Change the order of entries 
in the first row and you will see a determinate change now what seems to 
be the problem? Well, we cannot do the same as far as the fields are 
concerned for example, we cannot build an imaginary plane in a 3 D space 
we only can have a projection in other words an imaginary plane does not 
exist in a real space or does it? Well according to our research, it does just 
like the one in a real space We can then speak of a reference plane in a 
Complex Space and a Real Space Let's take a closer look. 

2. MATERIALS AND METHODS

Let's use an analogy and see if our method works for the vectors with 
imaginary components 

∆ |
−𝑖2 𝑖2 𝑖𝜋
1 2 −3
1 2 0

| = 9  

For the reference here A determinant of the diagonal matrix with the 
respective imaginary number entries (−𝑖2, 𝑖2, 𝑖𝜋) is −𝑖𝜋  

Check; 
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∆ |
−𝑖2

𝑖2

𝑖𝜋

| = −𝑖𝜋  

What does it possibly tell? Well, it can mean several things Firstly, that a 
three-component matrix with imaginary numbers as entries, can have a 
complex determinant and real determinant It can have both positive and 
negative value which also depends on the place of its entries (𝑥, 𝑦, 𝑧) 
making it a unique vector in space that determines a reference plane. This 
is a rather bold statement and it needs further analysis but we can speak 
of matrices as a means of translating from one Space to another in our 
case from Complex to Real: 𝐶 → 𝑅. The fact that 0 number can be 
presented as real imaginary and complex by definition and vice versa 
makes it possible to convert between various groups of numbers Binary 
decimal Ternary Quaternary etc. Just like an isomorphism in various 
fields Our task though is to find a specific group of numbers to satisfy that 
condition. 

3. METHODOLOGY AND RESEARCH 

Everyone remembers Complex number system and the ring rules that 
apply to every system of counting.  

They are: 

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2);  

(𝑥1, 𝑦1)(𝑥2, 𝑦2) =  (𝑥1𝑥2 − 𝑦1𝑦2, 𝑥1𝑦2 + 𝑥2𝑦1)  

The same set of rules applies to rings within different groups Complex 
Imaginary Real etc. In our case we are looking at a specific formula for a 
Ternary set such that the aforementioned principle would hold no matter 
what the entry would be a Ternary set is a specific class of numbers even 
more so is a Balanced set It requires that not only does the conformity 
holds but also the cardinality of a set here we must delve into a history 
and show how this problem was solved by various Mathematicians before 
and certainly we cannot forget Hamilton who set the rules 𝑆 = 𝑆(𝑞) +
𝑣(𝑞). A quick look at the form of a quaternion allows an onlooker to see a 
striking similarity with vectors with the left part being a scalar and the 
right a vector In other words a scalar or an integer is placed in 
correspondence with the vector The only issue is that, although this 
representation is a good two-component vector, it does not meet our first 
condition i.e a scalar is represented by a balanced set, in our case, a set of 
three numbers (−1, 0, 1). Right quaternions are almost a perfect way to 
convert between decimal and Binary but what about if we want to operate 
within Binary and Ternary system of counting and we don't need much 
conversion Then the issue appears. How can we quickly find a vector with 
entries say (−1, 0, 1) to convert between various types of numbers. 

4. RESULTS 

Before answers are given let's see what the definition of set is and perhaps 
under this definition, we can operate to find satisfactory answer to our 
question. Here we are: Ternary notation is the technique of expressing 
numbers in base 3. That is, every number 𝑥 𝜖 𝑅  is expressed in the form: 
 

𝑥 =  ∑𝑟𝑗3𝑗

𝑗𝜖𝑍

                                                                                                              (1) 

 

In our case, we will suggest a similar solution. But before we do a 
recursive look at what has been achieved thus far should've been taken 
our set is not a single unit but a triplet therefore every element should be 
expressed in the form 

𝑥 =  ∑ 𝑗𝜖𝑍𝑗,𝑗,𝑗    

∀𝑗 𝜖 𝑍 ∶ 𝑗 𝜖 (−1, 0, 1) 

All is left for us to do is to define 𝑗 

Let's look for any additional identities that we can utilize. Ternary 
Balanced operator. Here is one: 

∑ 𝑒2𝜋𝑖 
𝑘
𝑛  = 0                                                                                                           (2)

𝑛−1

𝑘=0

 

As a matter of fact, it’s a beautiful identity because it also corresponds to 

𝑞 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 ∶  |𝑞 = 0. It is not hard to find all components provided 
that 𝑥 =  ∑ 𝑗𝜖𝑍𝑗,𝑗,𝑗   

(*Important! 'j' in the last expression is an operator and not a dimension) 

The unique entries or an Eigenvector of this set will be numbers of the 
type 𝑗 𝑒𝑘 ∶ |𝑘 = 𝑥𝑖𝜋.  

5. PROOF 

∀𝑗 ∈ 𝑍 ∶ 𝑖 𝜖 (−1, 0, 1) 

Here comes a long history list First in it stands a Wick rotation unit which 
helps to find a system at any given state. The point is that the states are 
quantified making it easy to calculate That same very principle is utilized 
in our research of all the states available although we are only interested 
in three, namely (-1,0,1). They are equally as important for calculation as 
they are for Physics Electronics Computer Science etc. In that view our 
formula becomes: 

𝑥 =  ∑ 𝑗𝑒𝜋𝑖

1

𝑗= −1

                                                                                                           (3) 

It is only characterized by 3 states or vectors which are mutually 
orthogonal making the final result equal 0 the dot product that is cross 
product on the other hand makes the transition between Decimal and 
Ternary quite plausible. However, the final result requires further 
explanation, so without further ado, the following relation can be used to 
describe the sum of balanced trits. 
 

∑𝑥𝑒𝑥2𝜋𝑖 = 𝑗; ∀𝑗 ∈ 𝑍 ∶ 𝑗 𝑖𝑠 𝑎 𝑡𝑟𝑖𝑝𝑙𝑒 𝑠𝑒𝑡                                                         (4) 

 

Our formula establishes the relationship between vector field 𝐹(𝑥, 𝑦, 𝑧) 
and real numbers x. 
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