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A new classification of functions is presented in this work in relation to ordinary differential equations. A 
function for which the n’th derivative of it can be expressed in terms of linear combinations of lower 
derivatives and the function itself is defined as the linear differential function where n is the lowest derivative 
for such a relation to hold. The functions that do not obey the rule are defined as nonlinear differential 
functions. The properties of the differential functions are discussed through theorems and examples. One 
elementary application is the method of undetermined coefficients where the non-homogenous function 
should be a linear differential function. Variable coefficient equations are also treated within the context of 
linear differential functions. The approximation of nonlinear differential functions in terms of linear 
differential functions are discussed. An application to the perturbation solutions is given. The ideas and 
definitions presented in this work will add to the understanding of differential equations and their solutions 
as functions. 

KEYWORDS 

Ordinary Differential Equations, Linear Differential Functions, Non-Linear Differential Functions, Method of 
Undetermined Coefficients, Variable Coefficient 

1. INTRODUCTION

Differential equations courses are one of the fundamental courses in 
mathematics and applied sciences at the undergraduate level. An 
understanding of the nature of the equations is critical in search of 
solutions.  The theory of linear constant coefficient differential equations 
is well established with their solution procedures. This is the starting point 
in this work for classification of functions in association with the 
differential equations. A linear differential function is defined as the 
function whose n’th derivative can be expressed as a linear combination of 
its lower derivatives and the function itself. n is the minimum order of 
derivative for such a relation to exist and the function is called the linear 
differential function of order n. Nonlinear differential functions are the 
functions which cannot be expressed with the mentioned relationship. The 
definitions immediately lead to many theorems on properties of such 
functions. The formalism definitely adds to the understanding of the 
method of undetermined coefficients where the non-homogenous 
function should take a special form for the method in order to be 
applicable. The emphasis is not on the solution procedure itself but on the 
properties of non-homogenous functions. In the case of variable 
coefficient linear differential equations, the conditions for the existence of 
linear differential function solutions are discussed. A sample equation 
treated is the Euler-Cauchy equation. For nonlinear equations, the duffing 
equation and the Riccati equation are analysed within the context of 
differential functions. For fundamental solutions of such equations, see for 
example (O’Neil, 1991). For detailed analysis of the method of 
undetermined coefficients and its extensions to variable coefficient 
equations, see (Oliveira, 2013; Cook and Cook, 2022; Fischer, 2022; Leon, 
2010, 2015). He presented solutions of the differential equations by 
factorization of the operators to first order operators with variable 
coefficients (Euler, 2012). For a detailed treatment and solution methods 
of Riccati equation, see (Ndiaye, 2022).  

The paper is organized as follows: First the definition of a linear 
differential function is given. The properties of such functions are analysed 
next. Nonlinear differential functions are defined also. The link to the 
method of undetermined coefficients is exploited. Variable coefficient 
second order equations are treated with special cases of Euler-Cauchy 
equation. The nonlinear equations are treated by analysing the Riccati 
equation and the Duffing equation. Perturbation type solutions of the 
Duffing equation are interpreted within the context of the formalism. The 
formalism presented here may add to the understanding of differential 
equations for both research and education. 

2. LINEAR DIFFERENTIAL FUNCTION DEFINITIONS AND

PROPERTIES 

In this section, first the definition of a Linear Differential function is given. 
Based on the definition, the properties of such functions are determined 
with theorems and examples. 

Definition 1 

If the n’th derivative of a given function 𝑦(𝑥) can be expressed in terms of 
the linear combination of its lower derivatives and the function itself 

𝑦(𝑛) = 𝑐𝑛−1𝑦(𝑛−1) + 𝑐𝑛−2𝑦(𝑛−2) + ⋯ + 𝑐2𝑦′′ + 𝑐1𝑦′ + 𝑐0𝑦   (1) 

for some constants 𝑐𝑖 ∈ ℝ, and 𝑛 ∈ ℤ+ is the minimum order of derivative 
for which the above expression holds, then the function 𝑦(𝑥) is classified 
as the linear differential function of order n, denoted by LDF(n)  

Although the n’th derivative of a LDF(n) function satisfies relationship (1), 
the same is not true for lower derivatives. A simple example is the 𝑦(𝑥) =
𝑠𝑖𝑛𝑥 for which 

𝑦′ = √1 − 𝑦2     (2) 
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𝑦′′ = −𝑦    (3) 

and hence the function is LDF(2). The linear relationship appears at the 
second order of derivative but the first derivative has a nonlinear 
relationship. Two basic theorems immediately follow from the definition 

Theorem 1 

If an infinitely differentiable continuous function  𝑦(𝑥) is LDF(n), then all 
its higher derivatives can be expressed as linear relationships of their 
lower derivatives   

Proof 

Since 𝑦(𝑥) is LDF(n), equation (1) holds and differentiating once 

𝑦(𝑛+1) = 𝑐𝑛−1𝑦(𝑛) + 𝑐𝑛−2𝑦(𝑛−1) + ⋯ + 𝑐2𝑦′′′ + 𝑐1𝑦′′ + 𝑐0𝑦′   (4)  

which is again a linear relationship. Obviously, all successive derivatives 
will be linear relationships also   

Theorem 1 explains the reason of defining n as the minimum order in the 
definition, because, after the minimum order, all derivatives will hold a 
linear relationship. Another basic theorem from the definition is 

Theorem 2 

If an infinitely differentiable continuous function  𝑦(𝑥) is LDF(n), then it is 
always possible to find a linear constant coefficient differential operator 
which annihilates 𝑦(𝑥), namely 

ℒ (𝑛)𝑦(𝑥) = 0    (5) 

and the operator is  

ℒ (𝑛) = 𝐷𝑛 − 𝑐𝑛−1𝐷𝑛−1 − 𝑐𝑛−2𝐷𝑛−2 − ⋯ − 𝑐2𝐷2 − 𝑐1𝐷 − 𝑐0   (6) 

where 𝐷𝑘 =
𝑑𝑘

𝑑𝑥𝑘
  

Proof 

Taking all terms in definition (1) to the left-hand side and expressing the 
derivatives in operator notation, it is easily seen that (5) holds  

Based on Theorems 1 and 2, a LDF(n) function always satisfies a linear 
differential equation of order m for which 𝑚 ≥ 𝑛.  

Some example functions and their classifications are given in Table 1.  

Table 1: LDF function classifications 

𝒚(𝒙) Expression Differential Operator Classification 

sin𝛼𝑥, 𝑐𝑜𝑠𝛼𝑥 𝑦′′ = −𝛼2𝑦 𝐷2 + 𝛼2 LDF(2) 

𝑒𝛼𝑥 𝑦′ = 𝛼𝑦 𝐷 − 𝛼 LDF(1) 

𝛼 𝑦′ = 0 𝐷 LDF(1) 

𝑥𝑛−1 𝑦(𝑛) = 0 𝐷𝑛 LDF(n) 

𝑒𝛼𝑥sinβ𝑥, 𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 𝑦′′ = 2𝛼𝑦′ − (𝛼2 + 𝛽2)𝑦 𝐷2 − 2𝛼𝐷 + 𝛼2 + 𝛽2 LDF(2) 

𝑥𝑠𝑖𝑛𝛼𝑥, 𝑥𝑐𝑜𝑠𝛼𝑥 𝑦(4) = −2𝛼2𝑦′′ − 𝛼4𝑦 (𝐷2 + 𝛼2)2 LDF(4) 

𝑎𝑥 𝑦′ = 𝑙𝑛𝑎 𝑦 𝐷 − 𝑙𝑛𝑎 LDF(1) 

𝑥𝑚−1𝑒𝛼𝑥sinβ𝑥, 𝑥𝑚−1𝑒𝛼𝑥𝑐𝑜𝑠𝛽𝑥 𝑦(2𝑚) = ⋯ (𝐷2 − 2𝛼𝐷 + 𝛼2 + 𝛽2)𝑚 LDF(2m) 

Usually, in standard textbooks on differential equations, similar tables are 
given without the LDF classification.  

Example 1 

Determine the classification of 𝑠𝑖𝑛2𝑥 and 𝑐𝑜𝑠3𝑥.  

Solution  

𝑠𝑖𝑛2𝑥 =
1

2
−

1

2
𝑐𝑜𝑠2𝑥 and since the operator annihilating the function from 

Table 1 is ℒ (3) = 𝐷(𝐷2 + 4), with the expression 𝑦′′′ = −4𝑦′ , and hence 
𝑠𝑖𝑛2𝑥 is LDF(3).  

𝑐𝑜𝑠3𝑥 =
3

4
𝑐𝑜𝑠𝑥 +

1

4
𝑐𝑜𝑠3𝑥 and since the operator annihilating the function 

is ℒ (4) = (𝐷2 + 1)(𝐷2 + 9), with the expression 𝑦(4) = −10𝑦′′ − 9𝑦 , and 
hence 𝑐𝑜𝑠3𝑥 is LDF(4).  

Example 1 is generalized in the following theorem: 

Theorem 3 

The functions 𝑐𝑜𝑠𝑛𝑥 and 𝑠𝑖𝑛𝑛𝑥 are LDF(n+1)   

Proof 

If n is odd, 𝑛 = 2𝑘 + 1, 𝑘 = 0,1,2, …, then from the trigonometric identities 

𝑐𝑜𝑠𝑛𝑥 = 𝐴1𝑐𝑜𝑠𝑥 + 𝐴3𝑐𝑜𝑠3𝑥 + ⋯ 𝐴2𝑘+1cos (2𝑘 + 1)𝑥   (7) 

for some constants 𝐴2𝑘+1, 𝑘 = 0,1,2, …
𝑛−1

2
. The operator annihilating all 

these functions is  

(𝐷2 + 1)(𝐷2 + 32)(𝐷2 + 52) … (𝐷2 + (2𝑘 + 1)2). Since there are 𝑘 + 1 
terms each with second order operators, then the highest order term is 
𝐷2(𝑘+1) = 𝐷𝑛+1.  

Similarly, if n is even, then 𝑛 = 2𝑘, 𝑘 = 0,1,2, …
𝑛

2
, then from trigonometric 

identities 

𝑐𝑜𝑠𝑛𝑥 = 𝐵0 + 𝐵2𝑐𝑜𝑠2𝑥 + 𝐵4𝑐𝑜𝑠4𝑥 + ⋯ 𝐵2𝑘cos 2𝑘𝑥   (8) 

for some constants 𝐵2𝑘 , 𝑘 = 0,1,2, …
𝑛

2
. The operator annihilating all these 

functions is  

𝐷(𝐷2 + 22)(𝐷2 + 42) … (𝐷2 + (2𝑘)2). Since there are 𝑘 terms each with 
second order operators and a first order operator, then the order of the 

operator is 𝐷2𝑘+1 = 𝐷𝑛+1. Both cases imply that the function is LDF(n+1). 
A similar proof can be given for 𝑠𝑖𝑛𝑛𝑥 also  

Example 2 

Give the classification of an arbitrary polynomial 

𝑝𝑛(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎1𝑥 + 𝑎0   (9) 

Solution 

Since 𝐷𝑛+1𝑝𝑛 = 0, or 𝑝𝑛
(𝑛+1)

= 0, the polynomial is LDF(n+1). The 
following theorem is useful in determining the classification when there 
are linear combinations of several functions.  

Theorem 4 

If the function 𝑢 is LDF(n) and the function 𝑣 is LDF(m), then their linear 
combination 𝑤 = 𝑐1𝑢 + 𝑐2𝑣 is LDF(𝑝) where 𝑚𝑎𝑥(𝑛, 𝑚) ≤ 𝑝 ≤ 𝑛 + 𝑚   

Proof 

Apply the operator ℒ (𝑛) and ℒ (𝑚) to the function, use the linearity property 
and commutative property 

ℒ (𝑛)ℒ(𝑚)𝑤 = ℒ (𝑛)ℒ(𝑚)(𝑐1𝑢 + 𝑐2𝑤) = 𝑐1ℒ (𝑛)ℒ(𝑚)(𝑢) + 𝑐2ℒ (𝑛)ℒ(𝑚)(𝑣)  (10) 

= 𝑐1ℒ(𝑚) (ℒ (𝑛)(𝑢)) + 𝑐2ℒ(𝑛) (ℒ (𝑚)(𝑣)) = 𝑐1ℒ(𝑚)(0) + 𝑐2ℒ (𝑛)(0) = 0. (11) 

Hence ℒ (𝑛+𝑚)always annihilates the function 𝑤. It may happen that ℒ (𝑛) 

and ℒ (𝑚) may have common factors of differential operators which 
reduces the necessary order of the operator to annihilate both functions. 
In that case, the minimum order is the greatest of n and m, namely 
𝑚𝑎𝑥(𝑛, 𝑚) 

Example 3 

Give the classification of 𝑤 = 𝑐1𝑥2 + 𝑐2𝑠𝑖𝑛𝑥

Solution 

The function 𝑥2 is LDF(3) and 𝑠𝑖𝑛𝑥 is LDF(2). From Table 1, the operator 
𝐷3(𝐷2 + 1) annihilates 𝑤 and hence 𝑤 is LDF(5). This is an example of the 
highest order 𝑝 = 𝑛 + 𝑚 = 3 + 2 = 5.  

Example 4 

Determine the classification of 𝑤 = 𝑐1𝑥𝑐𝑜𝑠𝑥 + 𝑐2𝑠𝑖𝑛𝑥 
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Solution 

The function 𝑥𝑐𝑜𝑠𝑥 is LDF(4) and 𝑠𝑖𝑛𝑥 is LDF(2). However w is not LDF(6) 
since the operators share common factors. In fact the operator (𝐷2 + 1)2 
annihilates 𝑤 and hence 𝑤 is LDF(4) which is the maximum order of the 
two operators 𝐷2 + 1  and (𝐷2 + 1)2. This is an example of the lowest 
order 𝑝 = 𝑚𝑎𝑥(𝑛, 𝑚) = 𝑚𝑎𝑥(2,4) = 4.  

For the multiplication of functions, the following theorem is posed 

Theorem 5 

If the function 𝑢 is LDF(n) and the function 𝑣 is LDF(m), then their 
multiplication  

𝑤 = 𝑢𝑣 is LDF(𝑝) where 𝑚𝑎𝑥(𝑛, 𝑚) ≤ 𝑝 ≤ 𝑛𝑚   

Proof 

The proof is left to the reader.  

Example 5 

Determine the classification of 𝑤 = 𝑢𝑣 where 𝑢 = 𝑥2 and 𝑣 = 𝑐𝑜𝑠𝑥 

Solution 

𝑢 = 𝑥2 is LDF(3) and 𝑣 = 𝑐𝑜𝑠𝑥 is LDF(2). To annihilate the multiplication 
of the functions, one needs ℒ (6) = (𝐷2 + 1)3 = 𝐷6 + 3𝐷4 + 3𝐷2 + 1 hence 
𝑤 is LDF(6). This is an example for the highest limit since n=3 and m=2, 
𝑝 = 𝑛𝑚 = 6.  

Example 6 

Determine the classification of 𝑤 = 𝑢𝑣 where 𝑢 = 𝑒𝑥  and 𝑣 = 𝑠𝑖𝑛𝑥 

Solution 

𝑢 = 𝑒𝑥  is LDF(1) and 𝑣 = 𝑠𝑖𝑛𝑥 is LDF(2). To annihilate the multiplication 
of the functions, one needs ℒ (2) = 𝐷2 − 2𝐷 + 2 hence 𝑤 is LDF(2). This is 
an example for the lowest limit, since n=1 and m=2, 𝑝 = 𝑚𝑎𝑥 (𝑛, 𝑚) = 2.  

The next two theorems outline what happens when LDF(n) function is 
differentiated or integrated.  

Theorem 6 

If the function 𝑦 is LDF(n), then its derivative 𝑢 = 𝑦′ is either LDF(n) or 
LDF(𝑛 − 1)  

Proof 

y satisfies equation (1). Since 𝑢 = 𝑦′, 𝑦 = ∫ 𝑢𝑑𝑥. Substitute into (1) 

𝑢(𝑛−1) = 𝑐𝑛−1𝑢(𝑛−2) + 𝑐𝑛−2𝑢(𝑛−3) + ⋯ + 𝑐1𝑢 + 𝑐0 ∫ 𝑢𝑑𝑥   (12)  

Differentiate once 

𝑢(𝑛) = 𝑐𝑛−1𝑢(𝑛−1) + 𝑐𝑛−2𝑢(𝑛−2) + ⋯ + 𝑐1𝑢′ + 𝑐0𝑢   (13) 

which shows that 𝑢 = 𝑦′ is LDF(n). However, if 𝑐0 = 0 in (4), then 

𝑢(𝑛−1) = 𝑐𝑛−1𝑢(𝑛−2) + 𝑐𝑛−2𝑢(𝑛−3) + ⋯ + 𝑐1𝑢   (14) 

and for this special case, it is evident that u is LDF(n-1)   

Theorem 7 

If the function 𝑦 is LDF(n), then its integral 𝑢 = ∫ 𝑦𝑑𝑥 is either LDF(n) or  

LDF(𝑛 + 1)  

Proof 

The proof is similar to the proof of Theorem 6 and skipped for brevity.  

Example 7 

The function 𝑦 = 𝑒𝛼𝑥 is LDF(1) and differentiation and integration does 
not change its order. Similarly the function 𝑦 = 𝑐𝑜𝑠𝛼𝑥 is LDF(2) and 
differentiation and integration does not change the order. However, 𝑦 =
𝑥𝑛 is LDF(n+1) but differentiation results in a function of LDF(n) and 
integration results in a function of LDF(n+2), one lower and one higher 
order.  

A final theorem for this section is given for LDF(2) functions.  

Theorem 8 

If the function 𝑦 is LDF(2), then 𝑢 = 𝑦𝑛  (𝑛 ∈ 𝑍+) is LDF(𝑛 + 1)  

Proof 

The proof is given for 𝑛 = 2 . The idea can be generalized to an arbitrary  
𝑛. Since y is LDF(2) 

𝑦′′ = 𝑐1𝑦′ + 𝑐0𝑦                    (15) 

Try first if 𝑢 is also LDF(2) or not. If 𝑢 is LDF(2) then 

𝑢′′ = 𝑏1𝑢′ + 𝑏0𝑢   (16) 

Calculate 𝑢 and its derivatives in terms of y and use (15) for 𝑦′′ 

𝑢 = 𝑦2, 𝑢′ = 2𝑦𝑦′, 𝑢′′ = 2𝑦′2 + 2𝑐1𝑦𝑦′ + 2𝑐0𝑦2   (17) 

and substitute into (16) leading to the equation 

2𝑦′2 + 2𝑐1𝑦𝑦′ + 2𝑐0𝑦2 = 𝑏12𝑦𝑦′ + 𝑏0𝑦2 .               (18) 

As can be seen, the first term 2𝑦′2 cannot be balanced by adjusting the 
coefficients. So 𝑢 = 𝑦2 is not LDF(2). If 𝑢 is assumed to be LDF(3), then  

𝑢′′′ = 𝑏2𝑢′′ + 𝑏1𝑢′ + 𝑏0𝑢   (19) 

If 𝑢 = 𝑦2 is substituted in terms of y into (19) with employment of (15), 

6𝑐1𝑦′2 + (8𝑐0 + 2𝑐1
2)𝑦𝑦′ + 2𝑐0𝑐1𝑦2 = 𝑏2(2𝑦′2 + 2𝑐1𝑦𝑦′ + 2𝑐0𝑦2) +

2𝑏1𝑦𝑦′ + 𝑏0𝑦2.
  (20) 

Terms can be balanced now 

𝑏0 = −4𝑐0𝑐1, 𝑏1 = 4𝑐0 − 2𝑐1
2, 𝑏2 = 3𝑐1 

Hence (19) holds and 𝑢 = 𝑦2 is LDF(3). The idea can be generalized to any 
arbitrary power n in a similar way  

Note that Theorem 3 is a special case of Theorem 8 where u are harmonic 
functions.  

3. NON-LINEAR DIFFERENTIAL FUNCTION DEFINITION 

In this section, the definition of a Non-linear Differential Function is given.  

Definition 2 

If all the finite derivatives of a continuously differentiable function are 
expressed as nonlinear relations of its lower order derivatives and the 
function itself, then the function is a non-linear differential function NDF.   

Another way of expressing NDF is that, for such functions, no relation of 
the type   

𝑦(𝑛) = 𝑐𝑛−1𝑦(𝑛−1) + 𝑐𝑛−2𝑦(𝑛−2) + ⋯ + 𝑐2𝑦′′ + 𝑐1𝑦′ + 𝑐0𝑦   (21) 

exists for finite n.  

Example 8 

The function 𝑦 = 𝑡𝑎𝑛𝑥 is NDF. To see this 

𝑦′ = 1 + 𝑦2, 𝑦′′ = 2𝑦𝑦′, 𝑦′′′ = 2𝑦′2 + 2𝑦𝑦′′, 𝑦(4) = 6𝑦′𝑦′′ + 2𝑦𝑦′′′  

  (22) 

all being nonlinear relationships in terms of the lower orders of 
derivatives. The expressions cannot be linearized by successive 
derivations.  

Example 9 

The function 𝑦 = 𝑙𝑛𝑥 is NDF. To see this 

𝑦′ =
1

𝑥
= 𝑒−𝑦,  𝑦′′ = −𝑦′𝑒−𝑦 = −𝑒−2𝑦,  𝑦′′′ = 2𝑒−3𝑦   (23) 

with the n’th derivative 𝑦(𝑛) = (𝑛 − 1)! (−1)𝑛+1𝑒−𝑛𝑦 

being a nonlinear relationship.  

Example 10 

The function 𝑦 =
1

1+𝑥
 is NDF. The derivatives are all expressed as nonlinear 

relationships 

𝑦′ = −
1

(1+𝑥)2
= −𝑦2,  𝑦′′ = 2𝑦3,  𝑦′′′ = −6𝑦4, …,𝑦(𝑛) = 𝑛! (−1)𝑛𝑦𝑛+1

       (24) 

Example 11 

The function 𝑦 = 𝑒𝑥2
 is NDF. The derivatives are all expressed as nonlinear 

relationships 

𝑦′ = 2𝑦√𝑙𝑛𝑦,  𝑦′′ = 2𝑦 + 4𝑦√𝑙𝑛𝑦,  𝑦′′′ = 8𝑦√𝑙𝑛𝑦 + 4𝑦𝑙𝑛𝑦    (25) 
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4. THEOREMS FOR DIFFERENTIAL EQUATIONS 

The linear and nonlinear differential function definitions have direct 
impact on the solutions of ordinary differential equations. Two theorems 
on the nature of solutions will be given in this section. The last theorem is 
a systemization of the method of undetermined coefficients.  

Theorem 9 

If a nonlinear differential equation cannot be cast into a linear constant 
coefficient homogenous equation by repetitive differentiation, then the 
solution of the original equation is an NDF 

Proof 

By definition, a LDF satisfies the relationship (1). The given differential 
equation has an order m which is lower than n. It cannot be higher because 
then it would be already a linear equation since successive differentiation 
does not spoil the linearity of the equation. Then from the order m up to 
order n, one may differentiate the whole equation. If one cannot obtain a 
linear constant coefficient differential equation, then the solution cannot 
be an LDF. It must be NDF  

Example 12 

The duffing equation 𝑢′′ + 𝑢 + 𝜀𝑢3 = 0 possesses a NDF solution since by 
successive differentiations 𝑢′′′ + 𝑢′ + 3𝜀𝑢2𝑢′ = 0, 𝑢(4) + 6𝜀𝑢𝑢′2 − (1 +
𝜀𝑢2)(1 + 3𝜀𝑢2)𝑢 = 0  a linear differential equation cannot be obtained.  

The next theorem is vital for the well-known method of undetermined 
coefficients for which the solutions are generally determined by intuitive 
guesses.  

Theorem 10 (The Method of Undetermined Coefficients) 

For the n’th order non-homogenous linear differential equation 

𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + 𝑎𝑛−2𝑦(𝑛−2) + ⋯ + 𝑎2𝑦′′ + 𝑎1𝑦′ + 𝑎0𝑦 = 𝑓(𝑥)   (26) 

i) if 𝑓(𝑥) is LDF(m), then the particular solution can be found by the 
method of undetermined coefficients which is LDF(p), 𝑚 ≤ 𝑝 ≤ 𝑛 + 𝑚.  

ii) if 𝑓(𝑥) is NDF, then the particular solution is NDF and cannot be found 
by the method of undetermined coefficients  

Proof 

For case (i) the original equation possesses a linear differential operator 

ℒ (𝑛) and the equation in compact form is ℒ (𝑛)𝑦 = 𝑓(𝑥). Since 𝑓(𝑥) is 
LDF(m), it can be annihilated by an operator ℒ (𝑚). Applying this operator 
to both sides of the equation result in  ℒ (𝑛+𝑚)𝑦 = 0. Hence in the most 
general case, the solution 𝑦 of this equation is LDF(n+m). In the method of 

undetermined coefficients, the solution of  ℒ (𝑛+𝑚)𝑦 = 0 is back substituted 
into the original equation and the arbitrary coefficients are determined. 
However, if the operators do not have any common factors, then a LDF(m) 
solution satisfies the equation as a particular solution and hence 𝑚 ≤ 𝑝 ≤
𝑛 + 𝑚. 

For case (ii) since 𝑓(𝑥) is NDF, it cannot be annihilated by a linear 
differential operator ℒ (𝑚)and ℒ (𝑛+𝑚)𝑦 ≠ 0 for any m. Hence, the solution 
y cannot be a LDF and the method of undetermined coefficients fails. For 
this case, one may resort to other techniques such as variation of 
parameters to determine the NDF particular solution   

Example 13 

For the equation 𝑢′′ + 𝑢 = 𝑒𝑥  , n=2, m=1 and the particular solution 

𝑦 =
1

2
𝑒𝑥  is LDF(1) (p=m). However, for the equation 𝑢′′ + 𝑢 = 𝑠𝑖𝑛𝑥 , n=2, 

m=2 and the particular solution is  𝑦 = −
1

2
𝑥𝑐𝑜𝑠𝑥, which is LDF(4) 

(p=m+n). 

5. VARIABLE COEFFICIENT LINEAR DIFFERENTIAL EQUATIONS 

In general, a variable coefficient linear differential equation possesses a 
solution of NDF. If there exists a LDF solution, then the linear constant 
coefficient equation should be retractable by successive differentiation.  

5.1 First Order Equations 

A sample problem and its generalization are given in the next examples. 

Example 14 

For the first order variable coefficient linear differential equation 

𝑦′ −
𝑐𝑜𝑠𝑥

𝑠𝑖𝑛𝑥
𝑦 = 0   (27) 

the solution is 𝑦 = 𝑐𝑠𝑖𝑛𝑥 which is LDF(2). If one differentiates the above 
equation once  

𝑦′′ +
1−𝑐𝑜𝑠2𝑥

𝑠𝑖𝑛2𝑥
𝑦 = 0, which is 𝑦′′ + 𝑦 = 0 a linear relationship at the second 

order derivative which verifies the LDF(2) solution.  

Example 15 

For the variable coefficient first order linear differential equation 

𝑦′ − 𝑎(𝑥)𝑦 = 0        (28) 

what is the condition to obtain a LDF(2) solution? 

Solution 

Differentiate the equation once 

𝑦′′ − (𝑎′ + 𝑎2)𝑦 = 0.                 (29) 

The condition to obtain a LDF(2) solution is 𝑎′ + 𝑎2 = 𝑐 for some constant 
𝑐. 

 𝑐 = −1 case was already treated in example 14 yielding 𝑎 = 𝑐𝑜𝑡𝑥.  

𝑐 = 0 case yields 𝑎 =
1

𝑥+𝑎0
 for some constant 𝑎0. The solution is 𝑦 = 𝑐1(𝑥 +

𝑎0) a LDF(2) solution.  

For a general constant c, however, 𝑎 = √𝑐
𝑐1𝑒2√𝑐𝑥−1

𝑐1𝑒2√𝑐𝑥+1
 for a LDF(2) solution.  

5.2 Second Order Equations 

Consider the second order variable coefficient linear homogenous 
differential equation 

𝑦′′ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0    (30) 

The equation definitely possesses a LDF(2) solution for 𝑝(𝑥) = 𝑝0 and 
𝑞(𝑥) = 𝑞0 for some constants 𝑝0 and 𝑞0. The following theorem gives the 
conditions for (30) to possess LDF(3) and LDF(4) solutions.  

Theorem 11 

For the conditions  

𝑝′ − 𝑝2 + 𝑞 = 𝑝0 , 𝑞′ − 𝑝𝑞 = 𝑞0   (31) 

equation (30) possesses LDF(3) solutions, and for the conditions  

𝑝′′ − 3𝑝𝑝′ − 2𝑝𝑞 + 𝑝3 + 2𝑞′ = 𝑝0 , 𝑞′′ − 𝑝𝑞′ − 2𝑞𝑝′ + 𝑞𝑝2 − 𝑞2 = 𝑞0 

  (32) 

equation (30) possesses LDF(4) solutions for some constants  𝑝0 and 𝑞0.  

Proof 

Differentiate (30) two times and use 𝑦′′ = −𝑝(𝑥)𝑦′ − 𝑞(𝑥)𝑦 when 
necessary 

 𝑦′′′ + (𝑝′ − 𝑝2 + 𝑞)𝑦′ + (𝑞′ − 𝑝𝑞)𝑦 = 0               (33)  

𝑦(4) + (𝑝′′ − 3𝑝𝑝′ − 2𝑝𝑞 + 𝑝3 + 2𝑞′)𝑦′ + (𝑞′′ − 𝑝𝑞′ − 2𝑞𝑝′ + 𝑞𝑝2 −
𝑞2)𝑦 = 0  

  (34) 

Equating the coefficients to constants, conditions (31) and (32) are 
obtained. 

Note that Theorem 11 does not give all LDF(3) and LDF(4) solutions. For 
example, for LDF(3) solutions, if the solution of  

 (𝑝′ − 𝑝2 + 𝑞)𝑦′ + (𝑞′ − 𝑝𝑞)𝑦 = 0    (35) 

turns out to be a solution of  

 𝑦′′′ = 0     (36) 

then again one obtains a LDF(3) solution. 

Example 16 

Find two special LDF(3) solutions of (30).  

Solution 

i) If one takes 𝑝0 = 𝑞0 = 0, from (31), 

 𝑝′ − 𝑝2 + 𝑞 = 0 ,  𝑞′ − 𝑝𝑞 = 0.    (37) 

The second equation is solved first 
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𝑞 = 𝑐1𝑒∫ 𝑝𝑑𝑥   (38) 

and substituted into the first one 

𝑝′ − 𝑝2 + 𝑐1𝑒∫ 𝑝𝑑𝑥 = 0   (39) 

which is highly nonlinear. Try a solution 𝑝 =
𝑐2

𝑥
 leading to  

−
𝑐2

𝑥2
−

𝑐2
2

𝑥2
+ 𝑐1𝑥𝑐2 = 0   (40) 

which dictates 𝑐2 = −2 for the powers to be compatible. 𝑐1 = 2 is a 

consequence of this choice. Then 𝑝 = −
2

𝑥
, 𝑞 =

2

𝑥2
 and the equation is of 

Euler-Cauchy type 

𝑦′′ −
2

𝑥
𝑦′ +

2

𝑥2
𝑦 = 0     (41) 

The third order equation is 𝑦′′′ = 0 with a solution 𝑦 = 𝑐1𝑥2 + 𝑐2𝑥 + 𝑐3. 
Substituting this to the above second order equation, 𝑐3 = 0 and the 
solution is  

𝑦 = 𝑐1𝑥2 + 𝑐2𝑥   (42) 

ii) If one takes 𝑝0 = 1, 𝑞0 = 0, from (31), 

𝑝′ − 𝑝2 + 𝑞 = 1 ,  𝑞′ − 𝑝𝑞 = 0.    (43) 

with  

𝑞 = 𝑐1𝑒∫ 𝑝𝑑𝑥   (44) 

and  

𝑝′ − 𝑝2 + 𝑐1𝑒∫ 𝑝𝑑𝑥 = 1   (45) 

which is highly nonlinear. Select 𝑐1 = 0, and hence 𝑞 = 0, leading to  

𝑝′ − 𝑝2 = 1          (46) 

with  

𝑝 = 𝑡𝑎𝑛𝑥         (47) 

leading to the second order equation 

𝑦′′ + 𝑡𝑎𝑛𝑥 𝑦′ = 0    (48) 

The third order equation to be solved is 𝑦′′′ + 𝑦′ = 0 with a solution 𝑦 =
𝑐1 + 𝑐2𝑠𝑖𝑛𝑥 + 𝑐3𝑐𝑜𝑠𝑥. Substituting this to the above second order 
equation, 𝑐3 = 0 and the solution is  

𝑦 = 𝑐1 + 𝑐2𝑠𝑖𝑛𝑥    (49) 

Example 17 

Find a LDF(4) solution of (30) for the special case of 𝑞 = 0, 𝑝0 = 𝑞0 = 0.  

Solution 

From (32) for this special case, the second condition is already satisfied 
for 𝑞 = 0 and the first condition reduces to  

𝑝′′ − 3𝑝𝑝′ + 𝑝3 = 0                            (50) 

A trial solution 𝑝 =
𝐴

𝑥
 works and gives the condition 

𝐴(𝐴 + 1)(𝐴 + 2) = 0     (51) 

i) 𝐴 = 0 leads to 𝑦′′ = 0, a LDF(2) solution hence discarded. 

ii) 𝐴 = −1 leads to 𝑦′′′ = 0, a LDF(3) solution hence discarded. 

iii) 𝐴 = −2 leads to 𝑦(4) = 0, a LDF(4) solution which is the solution 
searched. Substituting 𝑦 = 𝑐1𝑥3 + 𝑐2𝑥2 + 𝑐3𝑥 + 𝑐4 into the original 

equation with 𝑝 = −
2

𝑥
,  𝑞 = 0, the coefficients 𝑐2 = 𝑐3 = 0 , and the LDF(4)

solution is 𝑦 = 𝑐1𝑥3 + 𝑐4. 

Example 18 Euler-Cauchy Differential Equation 

Consider the Euler-Cauchy differential equation 

𝑦′′ +
𝐴

𝑥
𝑦′ +

𝐵

𝑥2
𝑦 = 0    (52)

Find conditions for A and B so that the equation accepts a LDF(3) solution.  

Solution 

Differentiate the equation once and use the equation to eliminate the 
second derivative 

𝑦′′′ +
1

𝑥2
(𝐵 − 𝐴 − 𝐴2)𝑦′ −

1

𝑥3
𝐵(2 + 𝐴)𝑦 = 0    (53)  

An obvious solution is 𝐴 = −2 and 𝐵 = 2. However, for a more general 
solution take 

1

𝑥2
(𝐵 − 𝐴 − 𝐴2)𝑦′ −

1

𝑥3
𝐵(2 + 𝐴)𝑦 = 0   (54) 

which yields  

𝑦 = 𝑥𝐵(2+𝐴) (𝐵−𝐴−𝐴2)⁄   (55) 

and the reduced equation is  𝑦′′′ = 0. For 𝑦 to satisfy the reduced 
equation, 𝐵(2 + 𝐴) (𝐵 − 𝐴 − 𝐴2)⁄ = 2  

or 

𝐵 = −2(1 + 𝐴)      (56) 

which is the condition for a LDF(3) solution.  

6. NONLINEAR DIFFERENTIAL EQUATIONS 

A nonlinear differential equation usually possesses a NDF solution. It may 
however happen that for some special cases, the solutions turn out to be 
LDF solutions. Sometimes those LDF solutions are exact and sometimes, 
the exact NDF is approximated by a LDF solution. Two sample problems, 
namely the Riccati and the Duffing equation are analysed in this section.  

Example 19 Riccati Equation 

For the specific Riccati equation  

𝑦′ = 𝑦2 + 𝐴𝑥𝑦 + 𝐵𝑥2 + 𝐶       (57)  

find 𝐴, 𝐵, 𝐶 so that the equation has a LDF(2) solution. 

Solution 

Differentiating the equation once 

𝑦′′ = 𝑦(2𝑦′ + 𝐴) + 𝑥(𝐴𝑦′ + 2𝐵)      (58) 

The parenthesis should vanish  

2𝑦′ + 𝐴 = 0,  𝐴𝑦′ + 2𝐵 = 0    (59) 

leading to 𝐴 = 2, 𝐵 = 1. Both equations are identical now with a solution  
𝑦 = −𝑥 + 𝑐1 

In order this solution to satisfy the original equation −1 = 𝑐1
2 + 𝐶. Hence 

𝐶 = −1 − 𝑐1
2. 

In summary, the LDF(2) solution for the Riccati equation  

𝑦′ = 𝑦2 + 2𝑥𝑦 + 𝑥2 − 1 − 𝑐1
2   (60) 

is  

𝑦 = −𝑥 + 𝑐1       (61) 

Example 20 The Duffing Equation 

In Example 12, it is shown that the Duffing solutions are NDF. However, 
those NDF solutions may be approximated by LDF solutions. For the 
Duffing equation,  

𝑢′′ + 𝑢 + 𝜀𝑢3 = 0      (62) 

if  is small, a perturbative solution can be constructed (Nayfeh, 1981) by 
various methods such as the Lindstedt-Poincare method, the Method of 
Multiple Scales, Averaging method etc. which is 

𝑢 = 𝑎𝑐𝑜𝑠 [(1 + 𝜀
3

8
𝑎2) 𝑡 + 𝛽]    

+𝜀 {
1

32
𝑎3𝑐𝑜𝑠 [3 (1 + 𝜀

3

8
𝑎2) 𝑡 + 3𝛽] + 𝑏𝑐𝑜𝑠 [(1 + 𝜀

3

8
𝑎2) 𝑡 + 𝛾]}    (63) 

This solution can be annihilated by the operator  

(𝐷2 + (1 + 𝜀
3

8
𝑎2)

2

) (𝐷2 + 9 (1 + 𝜀
3

8
𝑎2)

2

)    (64) 

hence the solution is LDF(4). Carrying out the calculations to higher orders 
of approximation, one may obtain the higher harmonics also. To 
summarize, the approximate solution of the Duffing equation is 

i) LDF(4) for first correction term included 

ii) LDF(6) for second correction term included 

iii) LDF(2n+2) for n’th correction term included 

7. CONCLUDING REMARKS 

The functions are classified for the first time with reference to differential 
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equations. The linear differential functions and the non-linear differential 
functions are defined. Properties of such functions are exploited via 
theorems and worked examples. Applications to differential equations and 
their solutions are shown. With the aid of the given definitions, the method 
of undetermined coefficients can be understood better. Also the difference 
of the method of undetermined coefficients and the method of variations 
of parameters are systematically discussed.  The material presented here 
might improve the understanding of the differential equations and their 
solutions. The formalism given in the text may be useful for designing new 
differential equations possessing linear differential function solutions.  
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