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derivatives and the function itself is defined as the linear differential function where n is the lowest derivative
for such a relation to hold. The functions that do not obey the rule are defined as nonlinear differential
functions. The properties of the differential functions are discussed through theorems and examples. One

elementary application is the method of undetermined coefficients where the non-homogenous function
should be a linear differential function. Variable coefficient equations are also treated within the context of
linear differential functions. The approximation of nonlinear differential functions in terms of linear
differential functions are discussed. An application to the perturbation solutions is given. The ideas and
definitions presented in this work will add to the understanding of differential equations and their solutions

as functions.
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1. INTRODUCTION

Differential equations courses are one of the fundamental courses in
mathematics and applied sciences at the undergraduate level. An
understanding of the nature of the equations is critical in search of
solutions. The theory of linear constant coefficient differential equations
is well established with their solution procedures. This is the starting point
in this work for classification of functions in association with the
differential equations. A linear differential function is defined as the
function whose n’th derivative can be expressed as a linear combination of
its lower derivatives and the function itself. n is the minimum order of
derivative for such a relation to exist and the function is called the linear
differential function of order n. Nonlinear differential functions are the
functions which cannot be expressed with the mentioned relationship. The
definitions immediately lead to many theorems on properties of such
functions. The formalism definitely adds to the understanding of the
method of undetermined coefficients where the non-homogenous
function should take a special form for the method in order to be
applicable. The emphasis is not on the solution procedure itself but on the
properties of non-homogenous functions. In the case of variable
coefficient linear differential equations, the conditions for the existence of
linear differential function solutions are discussed. A sample equation
treated is the Euler-Cauchy equation. For nonlinear equations, the duffing
equation and the Riccati equation are analysed within the context of
differential functions. For fundamental solutions of such equations, see for
example (O’Neil, 1991). For detailed analysis of the method of
undetermined coefficients and its extensions to variable coefficient
equations, see (Oliveira, 2013; Cook and Cook, 2022; Fischer, 2022; Leon,
2010, 2015). He presented solutions of the differential equations by
factorization of the operators to first order operators with variable
coefficients (Euler, 2012). For a detailed treatment and solution methods
of Riccati equation, see (Ndiaye, 2022).

Quick Response Code

The paper is organized as follows: First the definition of a linear
differential function is given. The properties of such functions are analysed
next. Nonlinear differential functions are defined also. The link to the
method of undetermined coefficients is exploited. Variable coefficient
second order equations are treated with special cases of Euler-Cauchy
equation. The nonlinear equations are treated by analysing the Riccati
equation and the Duffing equation. Perturbation type solutions of the
Duffing equation are interpreted within the context of the formalism. The
formalism presented here may add to the understanding of differential
equations for both research and education.

2. LINEAR DIFFERENTIAL FUNCTION DEFINITIONS AND
PROPERTIES

In this section, first the definition of a Linear Differential function is given.
Based on the definition, the properties of such functions are determined
with theorems and examples.

Definition 1

If the n’th derivative of a given function y(x) can be expressed in terms of
the linear combination of its lower derivatives and the function itself

Y =y 4,y ™D 0y 0y + oy (€]

for some constants ¢; € R, and n € Z* is the minimum order of derivative
for which the above expression holds, then the function y(x) is classified
as the linear differential function of order n, denoted by LDF(n) [

Although the n’th derivative of a LDF(n) function satisfies relationship (1),
the same is not true for lower derivatives. A simple example is the y(x) =
sinx for which

Y ={1-» @)
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y'=-y ®3)

and hence the function is LDF(2). The linear relationship appears at the
second order of derivative but the first derivative has a nonlinear
relationship. Two basic theorems immediately follow from the definition

Theorem 1

If an infinitely differentiable continuous function y(x) is LDF(n), then all
its higher derivatives can be expressed as linear relationships of their
lower derivatives [

Proof
Since y(x) is LDF(n), equation (1) holds and differentiating once
Yy =y ™ 4 ey MY+t ey + 6y + 6y (4)

which is again a linear relationship. Obviously, all successive derivatives
will be linear relationships also [

Theorem 1 explains the reason of defining n as the minimum order in the
definition, because, after the minimum order, all derivatives will hold a
linear relationship. Another basic theorem from the definition is

Theorem 2

If an infinitely differentiable continuous function y(x) is LDF(n), then it is
always possible to find a linear constant coefficient differential operator
which annihilates y(x), namely

LMWy(x) =0 )
and the operator is

L0 =pr—¢c, D"t —c¢, D" 2 —..—,D?—¢,D —c, (6)

k
where D¥ = d—k O
dx
Proof

Taking all terms in definition (1) to the left-hand side and expressing the
derivatives in operator notation, it is easily seen that (5) holds [

Based on Theorems 1 and 2, a LDF(n) function always satisfies a linear
differential equation of order m for whichm > n.

Some example functions and their classifications are given in Table 1.

Table 1: LDF function classifications

y(x) Expression Differential Operator Classification
sinax, cosax y'" = —a?y D? + a? LDF(2)
e y =ay D—-a LDF(1)
a y' =0 D LDF(1)
1 y® =g pr LDF(n)
e™sinBx, e cosfx y" =2ay’ — (a® + By D% —2aD + a* + g LDF(2)
xsinax, xcosax y® = —2a%y" —a*y (D? + a?)? LDF(4)
a® y' =lnay D —lna LDF(1)
x™ e sinBx, x™ e cospx y@m = ... (D? —2aD + a? + )™ LDF(2m)

Usually, in standard textbooks on differential equations, similar tables are
given without the LDF classification.

Example 1
Determine the classification of sin?x and cos3x.
Solution

. 1 1 . N . .
sin’x = 7735 cos2x and since the operator annihilating the function from

Table 1 is L® = D(D? + 4), with the expression y"' = —4y’ , and hence
sin?x is LDF(3).

3 1 . L .
cos3x = Jcosx + cos3x and since the operator annihilating the function

is LW = (D? + 1)(D? + 9), with the expression y® = —10y” — 9y, and
hence cos3x is LDF(4).

Example 1 is generalized in the following theorem:

Theorem 3

The functions cos™x and sin™x are LDF(n+1) [J

Proof

Ifnisodd,n = 2k + 1,k = 0,1,2, ..., then from the trigonometric identities

cos™x = Aycosx + Azcos3x + -+ Aypic0s (2k + 1)x (7)
-1

for some constants A,,,,k =0,1,2, "T The operator annihilating all

these functions is

(D? 4+ 1)(D? + 3%)(D? + 52) ...(D? + (2k + 1)?). Since there are k+1
terms each with second order operators, then the highest order term is
p2Uk+1) — pn+t.

Similarly, if n is even, thenn = 2k, k = 0,1,2, ... g, then from trigonometric
identities

cos™x = By + B,cos2x + B,cos4x + -+ By,.cos 2kx (8)

for some constants By, k = 0,1,2, % The operator annihilating all these
functions is

D(D? + 22)(D? + 4?) ... (D? + (2k)?). Since there are k terms each with
second order operators and a first order operator, then the order of the

operator is D?¥*1 = D™+, Both cases imply that the function is LDF(n+1).
A similar proof can be given for sin"x also [

Example 2

Give the classification of an arbitrary polynomial

Pn(x) = apx™ + ap_ x4+ ayx + q 9
Solution

Since D™*1p, =0, or p,(lnﬂ) =0, the polynomial is LDF(n+1). The
following theorem is useful in determining the classification when there
are linear combinations of several functions.

Theorem 4

If the function u is LDF(n) and the function v is LDF(m), then their linear
combination w = ¢;u + c,v is LDF(p) where max(n,m) < p <n+m0

Proof

Apply the operator £ and £™ to the function, use the linearity property
and commutative property

LWLy = O L (o + c,w) = ¢ LML () + ¢,£L LM (v) (10)
= 6L (LDW)) + L™ (L™ @) = ¢,£M(0) + ¢,L™(0) = 0. (11)

Hence £™+*™always annihilates the function w. It may happen that £™
and £ may have common factors of differential operators which
reduces the necessary order of the operator to annihilate both functions.
In that case, the minimum order is the greatest of n and m, namely
max(n,m)’

Example 3
Give the classification of w = ¢;x2 + ¢,sinx
Solution

The function x? is LDF(3) and sinx is LDF(2). From Table 1, the operator
D3(D? + 1) annihilates w and hence w is LDF(5). This is an example of the
highestorderp =n+m=3+2=>5.

Example 4

Determine the classification of w = c;xcosx + c,sinx
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Solution

The function xcosx is LDF(4) and sinx is LDF(2). However w is not LDF(6)
since the operators share common factors. In fact the operator (D? + 1)?
annihilates w and hence w is LDF(4) which is the maximum order of the
two operators D? + 1 and (D? + 1)2. This is an example of the lowest
order p = max(n,m) = max(2,4) = 4.

For the multiplication of functions, the following theorem is posed
Theorem 5

If the function u is LDF(n) and the function v is LDF(m), then their
multiplication

w = uv is LDF(p) where max(n,m) < p < nm[]

Proof

The proof is left to the reader.

Example 5

Determine the classification of w = uv where u = x? and v = cosx
Solution

u = x? is LDF(3) and v = cosx is LDF(2). To annihilate the multiplication
of the functions, one needs £ = (D? 4+ 1)3 = D® + 3D* + 3D? + 1 hence
w is LDF(6). This is an example for the highest limit since n=3 and m=2,
p=nm=6.

Example 6
Determine the classification of w = uv where u = e* and v = sinx
Solution

u = e* is LDF(1) and v = sinx is LDF(2). To annihilate the multiplication
of the functions, one needs £L® = D? — 2D + 2 hence w is LDF(2). This is
an example for the lowest limit, since n=1 and m=2,p = max (n,m) = 2.

The next two theorems outline what happens when LDF(n) function is
differentiated or integrated.

Theorem 6

If the function y is LDF(n), then its derivative u = y' is either LDF(n) or
LDF(n — 1)U

Proof

y satisfies equation (1). Since u = y’, y = [ udx. Substitute into (1)

um D =c _u®D 4 utD + ot qu+ ey [udx (12)
Differentiate once

u™ = ¢, u™ D + ¢, u®™ D 4t U + cu (13)
which shows that u = y' is LDF(n). However, if ¢, = 0 in (4), then

ut O =c _u®D 4, uD 4t u (14)
and for this special case, it is evident that u is LDF(n-1) [J

Theorem 7

If the function y is LDF(n), then its integral u = [ ydx is either LDF(n) or
LDF(n + 1)

Proof

The proofis similar to the proof of Theorem 6 and skipped for brevity.
Example 7

The function y = e** is LDF(1) and differentiation and integration does
not change its order. Similarly the function y = cosax is LDF(2) and
differentiation and integration does not change the order. However, y =
x™ is LDF(n+1) but differentiation results in a function of LDF(n) and
integration results in a function of LDF(n+2), one lower and one higher
order.

A final theorem for this section is given for LDF(2) functions.
Theorem 8

If the function y is LDF(2), thenu = y™ (n € Z*) is LDF(n + 1)1
Proof

The proof is given for n = 2 . The idea can be generalized to an arbitrary
n. Since y is LDF(2)

y' =y +cy (15)
Try firstif u is also LDF(2) or not. If u is LDF(2) then

u'" = byu' + byu (16)
Calculate u and its derivatives in terms of y and use (15) for y"

u=y%u =2yy,u" =2y?+2¢,yy + 2¢,y? 17
and substitute into (16) leading to the equation

2y"2 + 2¢,yy' + 2¢oy% = by 2yy' + byy?. (18)

As can be seen, the first term 2y'? cannot be balanced by adjusting the
coefficients. So u = y? is not LDF(2). If u is assumed to be LDF(3), then

u"" = bu" + bu' + byu (19)
If u = y? is substituted in terms of y into (19) with employment of (15),

6c,Y"% + (8cy + 2¢2)yy’ + 2coc1y? = b, (2y" + 2¢,yy" + 2¢coy%) +
2b,yy' + byy?.

(20)
Terms can be balanced now
by = 4cy — 262,

by = —4cycy, b, =3¢,

Hence (19) holds and u = y? is LDF(3). The idea can be generalized to any
arbitrary power n in a similar way [

Note that Theorem 3 is a special case of Theorem 8 where u are harmonic
functions.

3. NON-LINEAR DIFFERENTIAL FUNCTION DEFINITION
In this section, the definition of a Non-linear Differential Function is given.
Definition 2

If all the finite derivatives of a continuously differentiable function are
expressed as nonlinear relations of its lower order derivatives and the
function itself, then the function is a non-linear differential function NDF.

Another way of expressing NDF is that, for such functions, no relation of
the type

Y =y + ey + e+ oy ey + ey (21)
exists for finite n.

Example 8

The function y = tanx is NDF. To see this

y® =6y'y" +2yy"

v =1+y%  y'=2yy, ¥ =2y"+2yy",

(22)

all being nonlinear relationships in terms of the lower orders of
derivatives. The expressions cannot be linearized by successive
derivations.

Example 9

The function y = Inx is NDF. To see this

y' = i =e”, Yy =—yeV=—eW y"=2e" (23)
with the n’th derivative y™ = (n — 1)! (=1)**1e™™

being a nonlinear relationship.

Example 10

The functiony = ﬁ is NDF. The derivatives are all expressed as nonlinear

relationships

'=_;=_2 "no_ 3 mo_ _ 4 n — 1\, ntl

y (1+x)2 yeoy 2y°, y 6y*, ...y n! (=1)"y
(24)

Example 11

The functiony = e*” is NDF. The derivatives are all expressed as nonlinear
relationships

y' =2ylny, y' =2y +4y,/lny, y"' = 8y,/Ilny + 4yiny (25)
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4.. THEOREMS FOR DIFFERENTIAL EQUATIONS

The linear and nonlinear differential function definitions have direct
impact on the solutions of ordinary differential equations. Two theorems
on the nature of solutions will be given in this section. The last theorem is
a systemization of the method of undetermined coefficients.

Theorem 9

If a nonlinear differential equation cannot be cast into a linear constant
coefficient homogenous equation by repetitive differentiation, then the
solution of the original equation is an NDF[J

Proof

By definition, a LDF satisfies the relationship (1). The given differential
equation has an order m which is lower than n. It cannot be higher because
then it would be already a linear equation since successive differentiation
does not spoil the linearity of the equation. Then from the order m up to
order n, one may differentiate the whole equation. If one cannot obtain a
linear constant coefficient differential equation, then the solution cannot
be an LDF. It must be NDF [

Example 12

The duffing equation u” + u + cu® = 0 possesses a NDF solution since by
successive differentiations u'"’ + u’ + 3eu?u’ =0, u® + 6cuu’? — (1 +
eu?)(1 + 3eu?)u = 0 alinear differential equation cannot be obtained.

The next theorem is vital for the well-known method of undetermined
coefficients for which the solutions are generally determined by intuitive
guesses.

Theorem 10 (The Method of Undetermined Coefficients)
For the n'th order non-homogenous linear differential equation
Y +an gy +an y "D+t Y +ay +agy =f(x)  (26)

i) if f(x) is LDF(m), then the particular solution can be found by the
method of undetermined coefficients which is LDF(p), m <p <n+m.

ii) if £ (x) is NDF, then the particular solution is NDF and cannot be found
by the method of undetermined coefficients [

Proof

For case (i) the original equation possesses a linear differential operator
L™ and the equation in compact form is L™y = f(x). Since f(x) is
LDF(m), it can be annihilated by an operator £™. Applying this operator
to both sides of the equation result in £®*™y = 0. Hence in the most
general case, the solution y of this equation is LDF(n+m). In the method of
undetermined coefficients, the solution of £®*™y = 0 is back substituted
into the original equation and the arbitrary coefficients are determined.
However, if the operators do not have any common factors, then a LDF(m)
solution satisfies the equation as a particular solution and hencem < p <
n+m.

For case (ii) since f(x) is NDF, it cannot be annihilated by a linear
differential operator £™and £L®*™y = 0 for any m. Hence, the solution
y cannot be a LDF and the method of undetermined coefficients fails. For
this case, one may resort to other techniques such as variation of
parameters to determine the NDF particular solution [

Example 13

For the equation u” +u =e* , n=2, m=1 and the particular solution
y = %e" is LDF(1) (p=m). However, for the equation u" + u = sinx , n=2,
m=2 and the particular solution is y = —%xcosx, which is LDF(4)
(p=m-+n).

5. VARIABLE COEFFICIENT LINEAR DIFFERENTIAL EQUATIONS

In general, a variable coefficient linear differential equation possesses a
solution of NDF. If there exists a LDF solution, then the linear constant
coefficient equation should be retractable by successive differentiation.

5.1 First Order Equations
A sample problem and its generalization are given in the next examples.
Example 14
For the first order variable coefficient linear differential equation
,  cosx

csx g 27)

sinx

the solution is y = csinx which is LDF(2). If one differentiates the above
equation once

ne2
y" ls;%xxy = 0, which is y"” + y = 0 a linear relationship at the second

order derivative which verifies the LDF(2) solution.

Example 15

For the variable coefficient first order linear differential equation

y' —a(x)y=0 (28)
what is the condition to obtain a LDF(2) solution?

Solution

Differentiate the equation once

y"' — (@ +a*)y=0. (29)

The condition to obtain a LDF(2) solution is a’ + a? = ¢ for some constant
c.

¢ = —1 case was already treated in example 14 yielding a = cotx.

¢ = 0caseyieldsa = ﬁ for some constant a,. The solutionisy = ¢; (x +
0
a,) a LDF(2) solution.

clezﬁx_l

For a general constant ¢, however, a = +/c for a LDF(2) solution.

cre2Vexyy
5.2 Second Order Equations

Consider the second order variable coefficient linear homogenous
differential equation

Y +p)y' +qx)y =0 (30)

The equation definitely possesses a LDF(2) solution for p(x) = p, and
q(x) = q, for some constants p, and q,. The following theorem gives the
conditions for (30) to possess LDF(3) and LDF(4) solutions.

Theorem 11

For the conditions

P =p*+a=po, q —pq=aq, (31)

equation (30) possesses LDF(3) solutions, and for the conditions

P =3pp' —2pq+p°+2q'=p, , q"—pa’ —2qp’'+qp®-q* =q"
(32)

equation (30) possesses LDF(4) solutions for some constants p, and q,.

Proof

Differentiate (30) two times and use y"” = —p(x)y' —q(x)y when
necessary

y'+@ -p*+ @)y + (@ —pgy=0 (33)

y;“) +(p" = 3pp’ = 2pq +p* +2q")y' + (¢" —pq’ —2qp’ + qp* -
q)y =0
(34)

Equating the coefficients to constants, conditions (31) and (32) are
obtained.

Note that Theorem 11 does not give all LDF(3) and LDF(4) solutions. For
example, for LDF(3) solutions, if the solution of

@ -p*+qy' +@ -p9y=0 (35)
turns out to be a solution of
" =0 (36)

then again one obtains a LDF(3) solution.

Example 16

Find two special LDF(3) solutions of (30).

Solution

i) If one takes p, = qo = 0, from (31),

q'—pq=0. (37)

The second equation is solved first

p'—p*+q=0,

Cite The Article: Mehmet Pakdemirli (2025). Classification of Functions in Association with Differential

Equations. Matrix Science Mathematic, 9(1): 28-33.




Matrix Science Mathematic (MSMK) 9(1) (2025) 28-33

q = c el P (38)
and substituted into the first one
p —p*+celrir=0 (39)

which is highly nonlinear. Try a solution p = % leading to

2 3 Ccy —
—;—;+c1x =0 (40)
which dictates ¢, = —2 for the powers to be compatible. ¢; =2 is a
consequence of this choice. Then p = —z, q= :—2 and the equation is of
Euler-Cauchy type

n” 2 r 2
y'=y'+5y=0 (41)
The third order equation is y"’ = 0 with a solution y = ¢;x? + ¢c,x + ¢5.

Substituting this to the above second order equation, c; = 0 and the
solution is

y =c1x% + cpx (42)

ii) If one takes p, = 1,q, = 0, from (31),

p'-p*+q=1, ¢ -pg=0. (43)
with
q = c el pax (44)
and
p' —p®+celP =1 (45)

which is highly nonlinear. Select ¢; = 0, and hence g = 0, leading to

p'-p*=1 (46)
with
p = tanx (47

leading to the second order equation
y'+tanxy' =0 (48)

"

The third order equation to be solved is y" + y' = 0 with a solution y =
¢y + ¢ysinx + cgcosx. Substituting this to the above second order
equation, c; = 0 and the solution is

Yy = ¢; + ¢y8inx (49)
Example 17

Find a LDF(4) solution of (30) for the special case of g = 0,p, = qo, = 0.
Solution

From (32) for this special case, the second condition is already satisfied
for ¢ = 0 and the first condition reduces to

p"—3pp' +p°=0 (50)
A trial solution p = f works and gives the condition

AA+1)(A+2)=0 (51)
i) A = 0leads to y" = 0, a LDF(2) solution hence discarded.

if) A = —1leadstoy’’ = 0, a LDF(3) solution hence discarded.

iif) A =—2 leads to y® =0, a LDF(4) solution which is the solution
searched. Substituting vy = ¢;x®+ c,x? 4+ c3x + ¢, into the original

equation withp = —i, q = 0, the coefficients ¢, = c; = 0, and the LDF(4)
solutionisy = ¢;x3 + ¢,.

Example 18 Euler-Cauchy Differential Equation

Consider the Euler-Cauchy differential equation

Y +2y +Zy=0 (52)

Find conditions for A and B so that the equation accepts a LDF(3) solution.
Solution

Differentiate the equation once and use the equation to eliminate the
second derivative

Y+ (B-A—-ADy —<BQ2+A)y=0 (53)

An obvious solution is A = —2 and B = 2. However, for a more general
solution take

%(B—A—Az)y’—xigB(Z +A)y=0 (54)
which yields
y = xB(z+A)/(B—A—A2) (55)

and the reduced equationis  y"" =0. For y to satisfy the reduced
equation, B(2 + A)/(B—A—A*) =2

or

B=-2(1+4) (56)
which is the condition for a LDF(3) solution.

6. NONLINEAR DIFFERENTIAL EQUATIONS

A nonlinear differential equation usually possesses a NDF solution. It may
however happen that for some special cases, the solutions turn out to be
LDF solutions. Sometimes those LDF solutions are exact and sometimes,
the exact NDF is approximated by a LDF solution. Two sample problems,
namely the Riccati and the Duffing equation are analysed in this section.

Example 19 Riccati Equation

For the specific Riccati equation

y =y*+Axy + Bx*+C (57)
find 4, B, C so that the equation has a LDF(2) solution.

Solution

Differentiating the equation once

y'=yQ2y' +A)+x(Ay' + 2B) (58)
The parenthesis should vanish
2y'+A4=0, Ay'+2B=0 (59)

leading to A = 2, B = 1. Both equations are identical now with a solution
y=—-x+¢

In order this solution to satisfy the original equation —1 = ¢ + C. Hence
C=-1-ci

In summary, the LDF(2) solution for the Riccati equation

y =y?4+2xy+x%2-1-c? (60)
is

y=-x+c (61)
Example 20 The Duffing Equation

In Example 12, it is shown that the Duffing solutions are NDF. However,
those NDF solutions may be approximated by LDF solutions. For the
Duffing equation,

u' tu+eut=0 (62)

if £is small, a perturbative solution can be constructed (Nayfeh, 1981) by
various methods such as the Lindstedt-Poincare method, the Method of
Multiple Scales, Averaging method etc. which is

u = acos [(1 + egaz) t+ ﬁ]

+& {ia%os [3 (1 + a%az) t+ 3/3] + bcos [(1 + azaz) £+ y]} (63)
This solution can be annihilated by the operator

(D2 + (1+s§a2)2) (DZ +9(1+a§a2)2) (64)

hence the solution is LDF(4). Carrying out the calculations to higher orders
of approximation, one may obtain the higher harmonics also. To
summarize, the approximate solution of the Duffing equation is

i) LDF(4) for first correction term included

ii) LDF(6) for second correction term included
iif) LDF(2n+2) for n’th correction term included
7. CONCLUDING REMARKS

The functions are classified for the first time with reference to differential
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equations. The linear differential functions and the non-linear differential
functions are defined. Properties of such functions are exploited via
theorems and worked examples. Applications to differential equations and
their solutions are shown. With the aid of the given definitions, the method
of undetermined coefficients can be understood better. Also the difference
of the method of undetermined coefficients and the method of variations
of parameters are systematically discussed. The material presented here
might improve the understanding of the differential equations and their
solutions. The formalism given in the text may be useful for designing new
differential equations possessing linear differential function solutions.
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