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This paper presents the formulation of higher order diagonally implicit 2-point super class of block extended 
backward differentiation formula (2DSBEBDF) for solving first order stiff initial value problems. The order 
of the 2DSBEBDF method is derived and found to be four. The Stability analysis of the method shows that the 
method is zero-stable and its absolute stability region shows that the method is A-stable within the stiff 
stability interval -1≤ρ<1. The numerical experiments demonstrate the effectiveness of the 2DSBEBDF 
method in solving stiff initial value and oscillatory problems over the existing stiff solver found in the 
literature. 
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1. INTRODUCTION

Stiff initial value problems (IVPs) arise in various scientific and 
engineering applications, particularly in chemical kinetics, control theory, 
electrical circuits, and fluid dynamics (Yusuf et al., 2024). These problems 
exhibit rapid transients and require specialized numerical techniques to 
ensure stability and efficiency (Suleiman et al., 2014). The term "stiffness" 
in differential equations was first formally introduced, who observed that 
standard explicit methods fail to handle problems with vastly different 
timescales efficiently (Curtis and Hirschfelder, 1952). Since then, the 
numerical analysis of stiff systems has been extensively studied, leading to 
the development of robust algorithms and stability criteria (Hairer and 
Wanner, 1996; Shampine and Gear, 1979).  

Stiff systems are characterized by the presence of eigenvalues of widely 
varying magnitudes in the Jacobian matrix of the system, leading to rapid 
variations in some components of the solution (Gear, 1971). Traditional 
explicit solvers, such as Runge-Kutta methods, often require prohibitively 
small step sizes to maintain stability, rendering them inefficient for stiff 
problems. Instead, implicit schemes, such as backward differentiation 
formulas (BDFs) and Rosenbrock methods, have been developed to handle 
stiffness effectively (Cash, 1983; Butcher, 2008). In this paper, we consider 
the numerical approximation of first-order stiff IVPs of the form: 

𝑦′ = 𝑓(𝑥, 𝑦),   𝑦(𝑎) = 𝑦0,   𝑎 ≤ 𝑥 ≤ 𝑏.   (1) 

One of the key challenges in solving stiff IVPs is choosing appropriate 
numerical solvers that balance accuracy and efficiency. The A-stability and 
L-stability properties of numerical methods are crucial in addressing 
stiffness (Dahlquist, 1963). A-stable methods remain stable regardless of 
step size, while L-stable methods further dampen unwanted oscillations, 
making them particularly useful for stiff problems. The development of 
adaptive step-size control in implicit solvers has significantly improved 
their performance, with algorithms such as the variable step size BBDF 
and variable-order variable step size BDF methods being widely used 

(Suleiman et al., 2013; Ibrahim et al., 2008; Zawawi et al., 2021; Abasi et 
al., 2014). 

Several real-world applications highlight the importance of efficient stiff 
IVP solvers. In chemical kinetics, reactions often occur on vastly different 
timescales, necessitating implicit solvers for accurate simulation (Verwer 
et al., 1999). Similarly, in electrical circuit analysis, stiff differential 
equations arise due to the presence of components with drastically 
different time constants (Wang and Chen, 2008). In climate modeling, 
atmospheric and oceanic interactions lead to stiff systems that require 
stable numerical integration techniques (Schiesser and Griffiths, 2009). 

Despite significant advances in stiff IVP solvers, challenges remain in 
optimizing computational efficiency, particularly for large-scale systems 
in high-performance computing environments (Knoll and Keyes, 2004). 
Recent developments in exponential integrator methods offer promising 
directions for improving the efficiency of stiff problem solvers (Suleiman 
et al., 2015; Ibrahim et al., 2007; Alhassan et al., 2024; Alhassan and Musa, 
2023; Alhassan et al., 2023; Ijam and Ibrahim, 2019). A famous result due 
to Dahlquist (1963) has shown that no A-stable linear multistep method 
(LMM) can have order greater than 2. However, the strategies for 
improving stability, order of accuracy, and efficiency of explicit and 
implicit multistep methods have been suggested, which include (Hairer 
and Wanner, 1996): 

• Using higher derivatives of the solution

• Throwing in additional stages, off-step points, super future points, and 
the likes, which leads to larger field of general linear methods. 

In an attempt to overcome Dahlquist’s second barrier, modified the 
conventional non-block implicit backward differentiation formula (BDF) 
to develop a new class of generalized multistep methods called implicit 
extended backward differentiation formulas (EBDFs) for stiff initial value 
problems (IVPs) (Dahlquist, 1963; Cash, 1980). This was achieved by 
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incorporating a “super future point” into the BDF method, as suggested by 
(Hairer and Wanner, 1996). The EBDF method is a non-block implicit 
scheme that approximates only one solution value per step and exhibits A-
stable methods of order up to four corresponding to the step number 𝑘 
ranging from 1 to 4 and also A(𝛼)-stable methods of order up to nine 
corresponding to the step number k ranging from 5 to 8. 

However, the performance of EBDF method is seen to be better than that 
of BDF. The EBDF method is of the form: 

∑ 𝛼𝑗𝑦𝑛+𝑗
𝑘
𝑗=0 = ℎ𝛽𝑘𝑓𝑛+𝑘 + 𝛽𝑘+1𝑓𝑛+𝑘+1                (2) 

The implementation procedures for formula (2) involve predicting the 
required solution using the conventional BDF and correcting the solution 
using the EBDF method of higher order. The procedures outlined are as 
follows: 

• Compute 𝑦̅𝑛+𝑘
(𝑛)  as the solution of conventional k-step BDF  

𝑦𝑛+𝑘 − ℎ𝛽̂𝑘𝑓𝑛+𝑘 = −∑ 𝛼̂𝑗𝑦𝑛+𝑗
𝑘−1
𝑗=0    (3) 

• Compute 𝑦̅𝑛+𝑘+1
(𝑛)  as the solution of  

𝑦𝑛+𝑘+1 − ℎ𝛽̂𝑘𝑓𝑛+𝑘+1 = −𝛼̂𝑘−1𝑦̅𝑛+𝑘
(𝑛) −∑ 𝛼̂𝑗𝑦𝑛+𝑗+1

𝑘−2
𝑗=0    (4) 

• Compute 𝑓𝑛̅+𝑘+1 = 𝑓(𝑥𝑛+𝑘+1, 𝑦̅𝑛+𝑘+1
(𝑛)

) 

• Compute 𝑦𝑛+𝑘 from (2) written in the form

𝑦𝑛+𝑘 − ℎ𝛽𝑘𝑓𝑛+𝑘 = −∑ 𝛼𝑗𝑦𝑛+𝑗 + ℎ𝛽𝑘+1𝑓𝑛̅+𝑘+1
𝑘−1
𝑗=0                     (5) 

In this paper, we extend the idea presented into the 2-point diagonally 
implicit super class of block backward differentiation formula (2DSBBDF) 
method of the form: 

∑ 𝛼𝑗𝑦𝑛+𝑗−1
1+𝑘
𝑗=0 = ℎ𝛽𝑘(𝑓𝑛+𝑘 − 𝜌𝑓𝑛+𝑘−1), 𝑘 = 1,2      (6) 

developed in [26], we propose a new block implicit scheme, denoted as the 
2-point diagonally implicit super class of block extended backward 
differentiation formula (2SDBEBDF), by introducing an additional future 
point to (6). This yields a formula of the form: 

∑ 𝛼𝑗𝑦𝑛+𝑗−1
1+𝑘
𝑗=0 = ℎ𝛽𝑘(𝑓𝑛+𝑘 − 𝜌𝑓𝑛+𝑘−1) + ℎ𝛽𝑘+1𝑓𝑛+𝑘+1,   𝑘 = 1,2      (7) 

The remainder of this paper is organized as follows. Section 2 provides the 
derivation of the proposed method, while Section 3 presents the 
determination of the method's order and error constant. A stability 
analysis of the method is conducted in Section 4. Implementation details 
are outlined in Section 5. Numerical results and test problems are 
presented in Section 6, followed by concluding remarks in Section 7. 

2. DERIVATION OF THE METHOD

This section presents the mathematical formulation of 2DSBEBDF method 
by modifying and incorporating the super future point to the existing third 
order diagonally implicit 2-point super class of block backward 
differentiation formula (2DSBBDF) for the integration of Stiff IVPs 
developed in [26], which has been derived using the Taylor series and 
expressed as: 

yn+1=1+ρ-3+ρyn-1-4-3+ρyn+2-3+ρρhfn-2-3+ρhfn+1  

yn+2=-2+ρ2ρ-11yn-1+32ρ+32ρ-11yn-3ρ+62ρ-11yn+1-62ρ-
11ρhfn+1+62ρ-11hfn+2 }         (8) 

These formulae in (8) represents  A-stable block implicit method of order 
3 that approximates two solution values concurrently per integration step. 
Therefore, the interpolation points involved for the newly proposed 
method is as shown below. 

Figure 1: Interpolation Points Involved in the 2DSBEBDF method 

Definition 1: The 2-point diagonally implicit super class of block extended 
backward differentiation formula (2DSBEBDF) is defined by 

j=01+kjyn+j-1=hkfn+k-ρfn+k-1+hk+1fn+k+1, k=1,2    (9) 

where k=1 represents the first point, and k=2 corresponds to the second 
points. The secheme (9) is derived using Taylor’s series expansion. 

Derivation of the first point: k=1 

To determine the coefficient of the first point, the linear difference 
operator Li associated with the first point of (9) is defined by: 

L1yxn,h:0yn-1+1yn+2yn+1-h1fn+1+hρ1fn+h2fn+2=0.    (10) 

By expanding the corresponding approximate relationship for (10) as a 
Taylor series about any point xn and collecting the like terms, we have the 
following system of equations as: 

c0yxn+c1hy'xn+c2h2y''xn++c3h3y'''xn+…    (11) 

where,  C0= 0+1+2=0 C1= -0+2-11-ρ-
2=0 C2=   120+12 2-1-22=0 C3=-160+16 2-121-22=0 }.    (12) 

when obtaining the first point, the coefficient 3 is normalized to one. 
Solving these system of equations in (12) provides the values for j and j as: 

Table 1: Coefficient of the first point for 2DSBEBDF 

0 1 2 1 2 

-8ρ+516ρ-23 -42ρ-716ρ-23 1 -2216ρ-23 2ρ+216ρ-23 

Substituting these values in equation (10), we obtain 

yn+1=8ρ+516ρ-23yn-1+42ρ-716ρ-23yn-2216ρ-23hfn+1+2216ρ-
23ρhfn+2ρ+216ρ-23hfn+2,         (13) 

Derivation of the second point: k=2 

Similarly, to determine the coefficient of the second point, the linear 
difference operator associated with the second point of (9) is defined as: 

L2yxn,h:0yn-1+1yn+2yn+1+3yn+2-h2fn+2+hρ2fn+1+h3fn+3=0.            (14) 

Expanding the corresponding approximate relation for (14) as a Taylor 
series about any point xn and grouping the like terms gives: 

c0yxn+c1hy'xn+c2h2y''xn++c3h3y'''xn+…          (15) 

where, 

c0=0+1+2+3+4=0 c1=-20-1+3+24-21-ρ=0  

c2=20+121+123+24-22-ρ=0  

c3=-430-161+163+434-22-12=0  

c3=230+1241+1243+234-243-16=0 }.  

       (16) 

when obtaining the second point, the coefficient 4 is normalized to one. 
Solving these system of equations in (16) provides the values for j and j as: 

Table 2: Coefficient of the second point for 2DSBEBDF 

0 1 2 3 2 3 

14+1776
-197 

-
912ρ+1176ρ

-197 

92ρ+3176ρ
-197 

1 
15076ρ

-197 

-
6ρ+376ρ

-197 

Substituting these values in equation (14), we obtain 

yn+2=-14ρ+1776ρ-197yn-1+912ρ+1176ρ-197yn-92ρ+3176ρ-197yn+1-
15076ρ-197hfn+2+15076ρ-197ρhfn+1+6ρ+376ρ-197hfn+3,    (17) 

Therefore, the expression for diagonally implicit 2-point super class of 
block extended backward differentiation formula (2DSBEBDF) is given as: 

yn+1=8ρ+516ρ-23yn-1+42ρ-716ρ-23yn-2216ρ-23hfn+1+2216ρ-
23ρhfn+2ρ+216ρ-23hfn+2 yn+2=-14ρ+1776ρ-197yn-1+912ρ+1176ρ-
197yn-92ρ+3176ρ-197yn+1-15076ρ-197hfn+2+15076ρ-
197ρhfn+1+6ρ+376ρ-197hfn+3 }         (18) 

To ensure stability, the parameter  is constrained within the range -1≤ρ<1, 
allowing for any value within this interval to be utilized. For the purpose 
of this paper and the numerical implementation of the method (18), the 
value of  has been specifically chosen as 12. Setting ρ=12 in (18) leads to 
the following formulae as: 

yn+1=-35yn-1+85yn+2215hfn+1-1115hfn-13hfn+2  

yn+2=853yn-1-5153yn+9653yn+1+5053hfn+2-2553hfn+1-
753hfn+3}         (19) 

To achieve optimal accuracy in the analysis of basic properties, the 
subsequent sections will provide a generalized analysis of our method's 
basic stability and convergence properties,  including order, consistency, 
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zero-stability and A-stability of our proposed method. 

This analysis will be presented in terms of the parameter , allowing for a 
comprehensive understanding of the method's behavior  

3. DERIVATION OF ORDER AND ITS ERROR CONSTANT OF THE 

METHOD 

This section presents the order and error constant of the method for 
different values of  corresponding to the formulae in (18). To derive the 
order of the method, the formulae in (18) can be expressed as: 

-8ρ+516ρ-23yn-1-42ρ-716ρ-23yn+yn+1=2216ρ-23ρhfn-2216ρ-
23hfn+1+2ρ+216ρ-23hfn+2  

14ρ+1776ρ-197yn-1-912ρ+1176ρ-197yn+92ρ+3176ρ-
197yn+1+yn+2=15076ρ-197ρhfn+1-15076ρ-197hfn+2+6ρ+376ρ-
197hfn+3 }         (20) 

The matrix representation associated with (20) is given by 

j=01Aj*Ym+j-1=hj=02Bj*Fm+j-1,  
  (21) 

Where A0*, A1*, B0*, B1* and B2* are square matrices defined by 

,

, , 

, 

and Ym-1, Ym, Fm-1, Fm and Fm+1 are column vectors defined by 

, , , 

, 

Equation (21) can also be expressed as 

  (22) 

Let A0*, A1*, B0*, B1* and B2* be block matrices defined by 

A0*=A0    A1, A1*=A2    A3,  B0*=B0    B1,  B1*=B2    B3 and B2*=B4    B5 

where 

, ,

, , ,

, , 

, , , 

Definition 2 (Order): The order of the method and its associated linear 
difference operator given by  

Lyx;h=j=0k=3Ajyx+jh-hj=0k+1Bjy'x+jh    (23) 

is defined as a unique integer p such that Cq, 01p, and cp+1≠0 where Cq is 
a constant column vector defined by  

c0=A0+A1+A2+…+Ak  

c1=A1+2A2+3A3+…+kAk-B0+B1+B2+…+Bk+1 
cq=1q!A1+2qA2+3qA3+…+kqAk-1q-1!B1+2q-1B2+3q-1B3+…+k+1q-
1Bk+1 }     (24) 

For q=015 we have 



Matrix Science Mathematic (MSMK) 9(2) (2025) 34-43 

Cite The Article: Buhari Alhassan, Hamisu Musa (2025). A Higher Order A-Stable  Diagonally Implicit 2-Point Super Class of Block Extended  
Backward Differentiation Formula for Solving Stiff Initial Value Problems. Matrix Science Mathematic, 9(2): 34-43. 

Therefore, the 2DSBEBDF method is of order four with error constant 
given as 

Definition 2 (Consistency): a linear Multistep method (LMM) is said to 
be consistent if it has order p≥1. It follows that a LMM is consistent if and 
only if the following conditions are satisfied [27]: 

i.j=0kAj=0 

ii.j=0kjAJ=j=0k+1Bj 

Theorem 1: The derived 2-point diagonally implicit super class of block 
extended backward differentiation formula (2DSBEBDF) method is 
consistent. 

Proof: 

To show that the 2DSBEBDF scheme is consistent. It suffices to show that 
the consistency conditions in definition 2 are satisfied. Let A0, A1, A2, A3, 
A4, A5, B0, B1, B2, B3, B4, B5 be as previously defined, then 

Thus, the first consistency condition in (i) is satisfied. 

Similarly, 

Therefore, the second consistency condition in (ii) is satisfied, hence in 
accordance with definition 2, the 2DSBEBDF method is consistent. 

4. STABILITY ANALYSIS OF THE METHOD 

In this section, we investigate the stability of the method based on A-
stability and zero-stability, using the matrix representation of (12) as 

= +

+

+

+

  (25) 

which is equivalent to 

=
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+

+

+

       (26) 

We define the k-block, r-point method (18) in general matrix form as 

A0Ym=A1Ym-1+hB0Fm-1+B1Fm+B2Fm+1,         (27) 

where, 

,

,

,

’

, , 

, 

, , 

By substituting the linear test ordinary differential equation y'=λy into 

(27) and using hλ=h, we obtain: 

A0Ym=A1Ym-1+hB0Ym-1+B1Ym+B2Ym+1,  
  (28) 

where , , , and are as previously defined and 

To obtain the characteristics polynomial, the determinant of the following 
equation is computed in MATLAB 18 environment which is given by: 

t,h=detA0-hB1-hB2t-A1+hB0    (29) 

Therefore, (29) is evaluated and is equivalent to 

t,h=-116ρ-2376ρ-197312h22t2+3432h22t+660h2t2-36h2t2+396h2ρt-
3228h2t2+824h2t-4702ht2-12162t2-308h2-
6876ρth+6668ht2+21922t+4900ρt2-374hρ+2356ht-9762-3824ρt-
4531t2-1076ρ+4550t-19=0     (30) 

To demonstrate the zero-stability of our proposed 2DSBEBDF method, we 
substitute h=0 into the characteristics polynomial (30), yielding the first 
characteristics polynomial as: 

t,0=--12162t2+21922t+4900ρt2-9762-3824ρt-4531t2-1076ρ+4550t-
1916ρ-2376ρ-197=0    (31) 

Solving (31) for t, the following roots are obtained: 

t=1, t=9762+1076ρ+1912162-4900ρ+4531    (32) 

Definition 3 (Zero-stability): A linear multistep method (LMM) is said to 
be zero-stable if no root of the first characteristics polynomial, t has 
modulus greater than one, and if every root with modulus one is simple 
(Musa, et al., 2025). 

By substituting two distinct values of the free parameter  into equation 
(32), we obtain the roots of the first characteristic polynomial given in 
equation (32) as: 

i.When  ρ=12 

t=1, t=0.3358490566 

ii. When ρ=-34 

t=1, t=-0.02688413948 

According to Definition 3, the 2DSBEBDF method is zero-stable, as the 
absolute value of all roots of the first characteristic polynomial is less than 
or equal to 1, and the root with a modulus of 1 is simple (i.e., unique). 

Definition 4 (A-stability): A linear multistep method (LMM) is said to be 
A-stable if the stability region covers the entire left-hand half-plane 
(Alhassan, et al., 2024). 

According to the study, a method with a region of absolute stability 
covering the entire negative left-hand complex plane imposes no step-size 
constraints for stability (Lambert, 1973). However, achieving A-stability 
severely limits the choice of linear multistep methods (LMMs), due to 
Dahlquist's second barrier in which dictates that A-stable LMMs cannot 
exceed order 2 (Dahlquist, 1963). This limitation motivates the search for 
higher-order LMMs with improved stability properties 

To determine the region of absolute stability (RAS) of the method (18) 
using a locus boundary, the boundary of absolute stability region of the 
method when ρ=-3/4 and ρ=1/2 is determined by substituting t=eiθ into 
equation (30). The graphs of the stability regions for the method plotted 
in MAPLE environment is given below: 

Figure 2: Stability Region for 2DSBBDF(ρ=-3/4) 
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Figure 3: Stability Region for 2DSBEBDF(ρ=1/2) 

Thus, the regions of absolute stability (RAS) of the 2DSBEBDF method are 
the areas outside the circular boundary. Notably, the RAS covers the entire 
left-half of the complex plane, indicating that the 2DSBEBDF method is A-
stable. Having fulfilled this A-stability criterion, the method is well-suited 
for numerically integrating stiff problems. 

5. IMPLEMENTATION OF THE METHOD 

The Newton’s iteration is applied for the implantation of the 2DSBEBDF 
method. The description of the iteration is given below, we first start by 
defining the error. 

Definition 5 (Absolute Error): Let yi and yxi be the approximate and 
theoretical solutions of the differential equation (1) respectively. Then the 
absolute error is defined and given by 

errorit=yit-yxit    (33) 

The maximum error is defined by 

MAXE=max⏟1≤i≤Tmaxerrorit⏟1≤i≤N,    (34) 

where T is the total number of steps and N is the number of equations. 

Define 

F1=yn+1+2216-23hfn+1-2216-23hfn-2+216-23hfn+2-1 
F2=yn+2+92+3176-197yn+1+15076-197hfn+2-15076-197hfn+1-6+376-
197hfn+3-2 },                                     (35) 

where 

1=8ρ+516ρ-23yn-1+42ρ-716ρ-23yn  

2=-14ρ+1776ρ-197yn-1+912ρ+1176ρ-197yn },  
       (36) 

are the backvalues. Let  yn+ji+1, j=1,2 denote the i+1th iterative values of 
yn+j and define 

en+ji+1=yn+ji+1-yn+ji, j=1,2                            (37) 

The Newton’s iteration for the 2DSBEBDF scheme takes the form: 

yn+ji+1=yn+ji-F'jyn+ji-1Fjyn+ji, j=1,2                                                                (38) 

This equation (38) takes the form: 

F'jyn+jien+ji+1=-Fjyn+ji, j=1,2                                                                              (39) 

The matrix representation of (39) is equivalently written as 

=

+

+

+ +

         (40) 

Thus, a computer code written in C-programming language is degined for 
the numerical implementation of equation (40) only when ρ=1/2. 

6. TEST PROBLEM AND NUMERICAL RESULT 

This section utilizes C programming language to test the developed 
method on stiff systems of ordinary differential equations (ODEs), 
assessing its efficiency and reliability. These types of problems are 
prevalent in engineering and physical sciences, particularly in areas such 
as reaction kinetics, string vibrations, electrical circuits, and so on. 

Problem 1: This system of stiff oscillatory problem is considered: 

y1'=-2y1+y2+2sin x ,    y10=2, 0≤x≤10, 

  y2'=998y1-999y2+999cos x -sin x ,    y20=3. 

Whose eigenvalues are 1=-1 and 2=-1000 and its corresponding exact 
solution is given by: 

y1=2e-x+sin x ,y2=2e-10x+cos x . 

Problem 2: This is the linear stiff IVP:  

y1'=y2,   y0=1, 0≤x≤2 

   y2'=-200y1-201y2,     y0=-10, 

The exact solution is given by: 

y1=1199e-200x+200199e-x,y2=-200199e-x+200199e-200x, 

The eigenvalues of the differential equations are -1 and -200. 

Source: Artificial Problem. 

Problem 3: Consider the following first order linear stiff IVP of the form: 

y1'=-15y1-14y2,   y10=1, 0≤x≤10 

   y2'=-14y1-15y2,    y20=0, 

The exact solution is given by: 

y1=12e-29x+12e-x,y2=12e-29x-12e-2x, 

The eigenvalues of the differential equations are -1 and -29. 

Source: Artificial Problem. 

Problem 4: This is a physical stiff problem taken from [33]: 

y1'=-3100y1,    y10=50,  0≤x≤20 

   y2'=3100y1-350y2,    y20=0. 

The exact solution is given by: 

y1=50e-3100x,y2=50e-350-1+e3100x. 

The eigenvalues of the differential equations are -6100, and -3100. 

The numerical results for the stiff problems given are presented in Table 
3-5. The problems are solved using our proposed 2DSBEBDF method 
when ρ=1/2 and the 2-point diagonally implicit block backward 
differentiation formula (2DBBDF) developed by (Zawawi, et al., 2012). For 
easy referencing the 2DBBDF is expressed as: 

yn+1=-13yn-1+43yn+23hfn+1  

yn+2=211yn-1-911yn+1811yn+1+611hfn+2}    (41) 

This scheme is shown to be A-stable, consistent and convergent. The 
following notations are used in the tables: 

H: Step Size 

MAXE: Maximum Absolute Error 

TS: Total Number of Step 

CPU TIME: Computation Time in seconds 
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MTD: Methods Used. 

2DBBDF: 2-point Diagonally Implcit Block Backward Differentiation 

Formula in (Zawawi, et al., 2012). 

2DBBDF: 2-point Diagonally Implcit Super Class of Block Extended 
Backward Differentiation Formula (our proposed method). 

Table 3: Numerical Result for Problem 1. 

H MTD TS MAXE CPU TIME 

10-2 
2DBBDF 

2DSBEBDF 

500 

500 

1.70236E+093 

7.70428E-002 

3.34300E-004 

4.31200E-005 

10-3 
2DBBDF 

2DSBEBDF 

5000 

5000 

2.08995E+101 

3.58395E-006 

3.42100E-003 

4.67400E-004 

10-4 
2DBBDF 

2DSBEBDF 

50000 

50000 

1.50076E-004 

3.59824E-008 

3.75200E-002 

4.14400E-003 

10-5 
2DBBDF 

2DSBEBDF 

500000 

500000 

1.50065E-005 

3.59982E-010 

4.30600E-001 

4.61800E-002 

10-6 
2DBBDF 

2DSBEBDF 

5000000 

5000000 

1.50066E-006 

3.59979E-012 

4.71100E+001 

5.25600E-001 

Table 4: Numerical Result for Problem 2. 

H MTD TS MAXE CPU TIME 

10-2 
2DBBDF 

2DSBEBDF 

100 

100 

1.42035E+007 

1.02086E+000 

3.63200E-003 

2.31000E-005 

10-3 
2DBBDF 

2DSBEBDF 

1000 

1000 

7.57316E-002 

3.68866E-002 

3.54800E-002 

2.55600E-004 

10-4 
2DBBDF 

2DSBEBDF 

10000 

10000 

1.40727E-002 

6.77281E-004 

3.88200E-002 

2.81500E-003 

10-5 
2DBBDF 

2DSBEBDF 

100000 

100000 

1.47164E-003 

7.18833E-006 

3.20600E-001 

3.37200E-002 

10-6 
2DBBDF 

2DSBEBDF 

1000000 

1000000 

1.47809E-004 

7.23122E-008 

4.51100E-001 

3.83900E-001 

Table 5: Numerical Result for Problem 3. 

H MTD TS MAXE CPU TIME 

10-2 
2DBBDF 

2DSBEBDF 

500 

500 

3.00703E-002 

2.81166E-002 

4.02800E-003 

2.42800E-004 

10-3 
2DBBDF 

2DSBEBDF 

5000 

5000 

9.95422E-003 

6.88539E-004 

4.29300E-003 

2.78600E-004 

10-4 
2DBBDF 

2DSBEBDF 

50000 

50000 

1.06267E-003 

7.50580E-006 

4.66900E-002 

3.10800E-003 

10-5 
2DBBDF 

2DSBEBDF 

500000 

500000 

1.06943E-004 

7.57075E-008 

4.90600E-002 

4.52600E-002 

10-6 
2DBBDF 

2DSBEBDF 

5000000 

5000000 

1.07011E-005 

7.57727E-010 

5.74400E-001 

4.99400E-001 

Table 6: Numerical Result for Problem 4. 

H MTD TS MAXE CPU TIME 

10-2 
2DBBDF 

2DSBEBDF 

1000 

1000 

1.35080E-002 

2.42438E-002 

2.82600E-003 

3.14200E-004 

10-3 
2DBBDF 

2DSBEBDF 

10000 

10000 

1.35298E-003 

2.42994E-007 

2.38300E-002 

3.66700E-003 

10-4 
2DBBDF 

2DSBEBDF 

100000 

100000 

1.35320E-004 

2.42994E-009 

2.26100E-002 

3.29100E-003 

10-5 
2DBBDF 

2DSBEBDF 

1000000 

1000000 

1.35323E-005 

2.43048E-011 

2.12700E-001 

3.09600E-002 

10-6 
2DBBDF 

2DSBEBDF 

10000000 

10000000 

1.35290E-006 

2.39784E-013 

2.37400E-001 

2.31800E-001 

In order to visually demonstrate the efficancy of our method, graphs 
depicting the relationship between MAXE  and H for the tested problems 

are generated. Below are the graphs illustrating the scaled maximum error 
for each individual problem. 
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Figure 4: Graph of log MAXE  against H for Problem 1 

Figure 5: Graph of log MAXE  against H for Problem 2 

Figure 6: Graph of log MAXE  against H for Problem 3 

Figure 7: Graph of log MAXE  against H for Problem 4 

7. DISCUSSION ON THE RESULT 

The provided tables present the numerical results obtained for various 
selected test problem using two different numerical methods, including 2-
point Diagonally Implicit Block Backward Differentiation Formula 
(2DBBDF), and 2-point Diagonally Implicit Superclass Block Extended 
Backward Differentiation Formula (2DSBEBDF). The results are analyzed 
based on the step size (H), total number of steps (TS), maximum error 
(MAXE), and CPU time. 

For each test problem, as the step size decreases, the total number of steps 
increases significantly, reflecting a finer discretization of the domain. 
Correspondingly, the maximum error decreases, indicating higher 

accuracy with smaller step sizes. Notably, the 2DSBEBDF method 
generally exhibits lower maximum errors compared to the 2DBBDF 
method across different step sizes, suggesting superior accuracy. 

However, it's important to consider the computational efficiency of the 
methods, as reflected in the CPU time. As expected, the CPU time increases 
with decreasing step size, indicating higher computational costs for finer 
discretization. Additionally, for each problem tested, the 2DSBEBDF 
method tends to have lower CPU times compared to the 2DBBDF method. 

Overall, the results demonstrate the trade-off between accuracy and 
computational cost. While the 2DSBEBDF method generally offers 
superior accuracy, it may require slightly less computational resources 
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compared to the 2DBBDF method. These findings provide valuable 
insights for selecting an appropriate numerical method based on the 
desired balance between accuracy and computational efficiency for 
specific problem instances. 

8. CONCLUSION 

The diagonally implicit 2-point super class of block extended backward 
differentiation formula (2SBEBDF), designed to efficiently handle stiff 
ODEs is developed. The method extends the concept of introducing an 
additional super future point to the existing 2-point super class of block 
backward differentiation formula, resulting in higher-order A-stable and 
more accurate block scheme.  The derivation process, order 
determination, and stability analysis of the 2SDBEBDF method is 
presented. The paper establishes that the 2DSBEBDF method is of fourth 
order with specific error constant. The stability analysis explores both 
zero and A-stability, confirming that the method is zero-stable, and A-
stable, making it suitable for solving first-order stiff initial value problems. 
Implementation details in Dev C++ compiler environment using Newton's 
iteration is provided, and the methods are tested on various stiff ODEs. The 
numerical simulation of results demonstrates the effectiveness and 
efficiency of the 2DSBEBDF method, outperforming existing 2-point 
diagonally implicit block backward differentiation formulae (2DBBDF) 
algorithms in terms of accuracy and computational cost.  
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