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of the 2DSBEBDF method is derived and found to be four. The Stability analysis of the method shows that the
method is zero-stable and its absolute stability region shows that the method is A-stable within the stiff
stability interval -1< p <1. The numerical experiments demonstrate the effectiveness of the 2DSBEBDF

method in solving stiff initial value and oscillatory problems over the existing stiff solver found in the

literature.
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1. INTRODUCTION

Stiff initial value problems (IVPs) arise in various scientific and
engineering applications, particularly in chemical kinetics, control theory,
electrical circuits, and fluid dynamics (Yusuf et al.,, 2024). These problems
exhibit rapid transients and require specialized numerical techniques to
ensure stability and efficiency (Suleiman et al., 2014). The term "stiffness"
in differential equations was first formally introduced, who observed that
standard explicit methods fail to handle problems with vastly different
timescales efficiently (Curtis and Hirschfelder, 1952). Since then, the
numerical analysis of stiff systems has been extensively studied, leading to
the development of robust algorithms and stability criteria (Hairer and
Wanner, 1996; Shampine and Gear, 1979).

Stiff systems are characterized by the presence of eigenvalues of widely
varying magnitudes in the Jacobian matrix of the system, leading to rapid
variations in some components of the solution (Gear, 1971). Traditional
explicit solvers, such as Runge-Kutta methods, often require prohibitively
small step sizes to maintain stability, rendering them inefficient for stiff
problems. Instead, implicit schemes, such as backward differentiation
formulas (BDFs) and Rosenbrock methods, have been developed to handle
stiffness effectively (Cash, 1983; Butcher, 2008). In this paper, we consider
the numerical approximation of first-order stiff [VPs of the form:

y'=fGy), y@ =y, a<x<bh. ey

One of the key challenges in solving stiff IVPs is choosing appropriate
numerical solvers that balance accuracy and efficiency. The A-stability and
L-stability properties of numerical methods are crucial in addressing
stiffness (Dahlquist, 1963). A-stable methods remain stable regardless of
step size, while L-stable methods further dampen unwanted oscillations,
making them particularly useful for stiff problems. The development of
adaptive step-size control in implicit solvers has significantly improved
their performance, with algorithms such as the variable step size BBDF
and variable-order variable step size BDF methods being widely used

Quick Response Code

(Suleiman et al.,, 2013; Ibrahim et al., 2008; Zawawi et al,, 2021; Abasi et
al., 2014).

Several real-world applications highlight the importance of efficient stiff
IVP solvers. In chemical kinetics, reactions often occur on vastly different
timescales, necessitating implicit solvers for accurate simulation (Verwer
et al, 1999). Similarly, in electrical circuit analysis, stiff differential
equations arise due to the presence of components with drastically
different time constants (Wang and Chen, 2008). In climate modeling,
atmospheric and oceanic interactions lead to stiff systems that require
stable numerical integration techniques (Schiesser and Griffiths, 2009).

Despite significant advances in stiff [VP solvers, challenges remain in
optimizing computational efficiency, particularly for large-scale systems
in high-performance computing environments (Knoll and Keyes, 2004).
Recent developments in exponential integrator methods offer promising
directions for improving the efficiency of stiff problem solvers (Suleiman
etal, 2015; Ibrahim et al,, 2007; Alhassan et al., 2024; Alhassan and Musa,
2023; Alhassan et al,, 2023; Ijam and Ibrahim, 2019). A famous result due
to Dahlquist (1963) has shown that no A-stable linear multistep method
(LMM) can have order greater than 2. However, the strategies for
improving stability, order of accuracy, and efficiency of explicit and
implicit multistep methods have been suggested, which include (Hairer
and Wanner, 1996):

e Using higher derivatives of the solution

e Throwingin additional stages, off-step points, super future points, and
the likes, which leads to larger field of general linear methods.

In an attempt to overcome Dahlquist’s second barrier, modified the
conventional non-block implicit backward differentiation formula (BDF)
to develop a new class of generalized multistep methods called implicit
extended backward differentiation formulas (EBDFs) for stiff initial value
problems (IVPs) (Dahlquist, 1963; Cash, 1980). This was achieved by

Access this article online

Website: DOI:

www.matrixsmathematic.com

10.26480/msmk.02.2025.34.43

Cite The Article: Buhari Alhassan, Hamisu Musa (2025). A Higher Order A-Stable Diagonally Implicit 2-Point Super Class of Block Extended

Backward Differentiation Formula for Solving Stiff Initial Value Problems. Matrix Science Mathematic, 9(2): 34-43.




Matrix Science Mathematic (MSMK) 9(2) (2025) 34-43

incorporating a “super future point” into the BDF method, as suggested by
(Hairer and Wanner, 1996). The EBDF method is a non-block implicit
scheme that approximates only one solution value per step and exhibits A-
stable methods of order up to four corresponding to the step number k
ranging from 1 to 4 and also A(a)-stable methods of order up to nine
corresponding to the step number k ranging from 5 to 8.

However, the performance of EBDF method is seen to be better than that
of BDF. The EBDF method is of the form:

2}(:0 4 Ynsj = hBifnir + Brarfrrkr (2)

The implementation procedures for formula (2) involve predicting the
required solution using the conventional BDF and correcting the solution
using the EBDF method of higher order. The procedures outlined are as
follows:

e Compute )7,(1?,( as the solution of conventional k-step BDF

Yk = hBifuri = _Zj:é @ Ynyj (3)

e Compute )7152),(“ as the solution of

Vnt+k+1 — hﬁkfn+k+1 = _&k—l}_]r(;i)k - Zﬁg @ Ynsje1 (4)

e Compute frpsq = f(xn+k+1:}_’$)k+1)

. Compute Y, from (2) written in the form
Yk — hBrfnik = —Zﬁé AjYntj T RBrsr furiera (5)

In this paper, we extend the idea presented into the 2-point diagonally
implicit super class of block backward differentiation formula (2DSBBDF)
method of the form:

}:(])( ajyn+j—1 = hﬂk(fnﬂc - pfn+k—1)l k= 1,2 (6)

developed in [26], we propose a new block implicit scheme, denoted as the
2-point diagonally implicit super class of block extended backward
differentiation formula (2SDBEBDF), by introducing an additional future
point to (6). This yields a formula of the form:

Z}:g G Yntj-1 = hBy(fark = Pfusk-1) + hBrsifrsisr, k=12 (7)

The remainder of this paper is organized as follows. Section 2 provides the
derivation of the proposed method, while Section 3 presents the
determination of the method's order and error constant. A stability
analysis of the method is conducted in Section 4. Implementation details
are outlined in Section 5. Numerical results and test problems are
presented in Section 6, followed by concluding remarks in Section 7.

2. DERIVATION OF THE METHOD

This section presents the mathematical formulation of 2DSBEBDF method
by modifying and incorporating the super future point to the existing third
order diagonally implicit 2-point super class of block backward
differentiation formula (2DSBBDF) for the integration of Stiff IVPs
developed in [26], which has been derived using the Taylor series and
expressed as:

yn+1=1+p-3+pyn-1-4-3+pyn+2-3+pphfn-2-3+phfn+1

yn+2=-2+p2p-11yn-1+32p+32p-11yn-3p+62p-11yn+1-62p-
11phfn+1+62p-11hfn+2 } (8)

These formulae in (8) represents A-stable block implicit method of order
3 that approximates two solution values concurrently per integration step.
Therefore, the interpolation points involved for the newly proposed
method is as shown below.

h h h h

Tr-1 T Lnt1 Lnta Lnz3
& .
- Fnt1 v
Yn+z

Figure 1: Interpolation Points Involved in the 2DSBEBDF method

Definition 1: The 2-point diagonally implicit super class of block extended
backward differentiation formula (2DSBEBDF) is defined by

j=01+Kjyn+j-1=hkfn+k-pfn+k-1+hk+1fn+k+1, k=1,2 ©

where k=1 represents the first point, and k=2 corresponds to the second
points. The secheme (9) is derived using Taylor’s series expansion.

Derivation of the first point: k=1

To determine the coefficient of the first point, the linear difference
operator Li associated with the first point of (9) is defined by:

L1yxn,h:0yn-1+1yn+2yn+1-h1fn+1+hp1fn+h2fn+2=0. (10)

By expanding the corresponding approximate relationship for (10) as a
Taylor series about any point xn and collecting the like terms, we have the
following system of equations as:

cOyxn+clhy'xn+c2h2y"xn++c3h3y'"xn+... (11)
where, CO0= 0+1+2=0 Cl= -0+2-11-p-
2=0C2= 120+12 2-1-22=0 C3=-160+16 2-121-22=0 }. (12)

when obtaining the first point, the coefficient 3 is normalized to one.
Solving these system of equations in (12) provides the values for j and j as:

Table 1: Coefficient of the first point for 2DSBEBDF
0 1 2 1 2
-8p+516p-23 -42p-716p-23 | 1 | -2216p-23 | 2p+216p-23

Substituting these values in equation (10), we obtain

yn+1=8p+516p-23yn-1+42p-716p-23yn-2216p-23hfn+1+2216p-
23phfn+2p+216p-23hfn+2, (13)

Derivation of the second point: k=2

Similarly, to determine the coefficient of the second point, the linear
difference operator associated with the second point of (9) is defined as:

L2yxn,h:0yn-1+1yn+2yn+1+3yn+2-h2fn+2+hp2fn+1+h3fn+3=0. (14)

Expanding the corresponding approximate relation for (14) as a Taylor
series about any point xn and grouping the like terms gives:

cOyxn+clhy'xn+c2h2y"xn++c3h3y'"'xn+... (15)
where,
c0=0+1+2+3+4=0 c1=-20-1+3+24-21-p=0
c2=20+121+123+24-22-p=0
c3=-430-161+163+434-22-12=0
c3=230+1241+1243+234-243-16=0}.
(16)

when obtaining the second point, the coefficient 4 is normalized to one.
Solving these system of equations in (16) provides the values for jand j as:

Table 2: Coefficient of the second point for 2DSBEBDF
0 1 2 3 2 3
14_2;7776 912p+1176p 92‘)_;?917769 1 1?;)9776" 6p+376p
197 -197

Substituting these values in equation (14), we obtain

yn+2=-14p+1776p-197yn-1+912p+1176p-197yn-92p+3176p-197yn+1-
15076p-197hfn+2+15076p-197phfn+1+6p+376p-197hfn+3, 17)

Therefore, the expression for diagonally implicit 2-point super class of
block extended backward differentiation formula (2DSBEBDF) is given as:

yn+1=8p+516p-23yn-1+42p-716p-23yn-2216p-23hfn+1+2216p-
23phfn+2p+216p-23hfn+2  yn+2=-14p+1776p-197yn-1+912p+1176p-
197yn-92p+3176p-197yn+1-15076p-197hfn+2+15076p-
197phfn+1+6p+376p-197hfn+3 } (18)

To ensure stability, the parameter is constrained within the range -1<p<1,
allowing for any value within this interval to be utilized. For the purpose
of this paper and the numerical implementation of the method (18), the
value of has been specifically chosen as 12. Setting p=12 in (18) leads to
the following formulae as:

yn+1=-35yn-1+85yn+2215hfn+1-1115hfn-13hfn+2

yn+2=853yn-1-5153yn+9653yn+1+5053hfn+2-2553hfn+1-
753hfn+3} (19)

To achieve optimal accuracy in the analysis of basic properties, the
subsequent sections will provide a generalized analysis of our method's
basic stability and convergence properties, including order, consistency,

Cite The Article: Buhari Alhassan, Hamisu Musa (2025). A Higher Order A-Stable Diagonally Implicit 2-Point Super Class of Block Extended

Backward Differentiation Formula for Solving Stiff Initial Value Problems. Matrix Science Mathematic, 9(2): 34-43.




Matrix Science Mathematic (MSMK) 9(2) (2025) 34-43

zero-stability and A-stability of our proposed method. 0
This analysis will be presented in terms of the parameter , allowing for a h 6(p + 3) fn+3
comprehensive understanding of the method's behavior - 0
76p 197 Joea
3. DERIVATION OF ORDER AND ITS ERROR CONSTANT OF THE (22)
METHOD Let A0*, A1* B0O* B1* and B2* be block matrices defined by
This section presents the order and error constant of the method for A0*=A0 A1l,A1*=A2 A3, B0O*=B0 B1, B1*=B2 B3 and B2*=B4 B5
different values of corresponding to the formulae in (18). To derive the
order of the method, the formulae in (18) can be expressed as: where
-8p+516p-23yn-1-42p-716p-23yn+yn+1=2216p-23phfn-2216p- i 8p+5 4(2,0 _ 7)
23hfn+1+2p+216p-23hfn+2 _ -
14p+1776p-197yn-1-912p+1176p-197yn+92p+3176p- A = 16p—23 = 16p—23
197yn+1+yn+2=15076p-197phfn+1-15076p-197hfn+2+6p+376p- v 14p+17 ' 9(1 2p+1 1)
197hfn+3 20 T = -
3 S 20 76p 197 76p—197
The matrix representation associated with (20) is given by - )
j=01Aj*Ym+j-1=hj=02Bj*Fm+j-1, 1
ev 4, =|92p+31)| _[0] [0
Where A0*, A1* BO* B1* and B2* are square matrices defined by 76p —197 t 1 o 0
_ 8p+5  4(2p-7) 22
A = 16p—23 16p—-23 22p B - 16p-23
14p+17  9(12p+11) B =|16p-23| " 150p
| 76p=197  T6p-197 | 0 76p —197
| 0 o _22p [ 2(p+2)
4" = 92p+31) | Bo=| 1ep-23 5 _| 16p-23 0
76p 197 0 0 37 150 B, =| 6(p+3) 5 [0
Y 2p +2) | 76p—197 76p-197 | 7 |0
B = 16P —-23 1 6)9 -23 Definition 2 (Order): The order of the method and its associated linear
1= 1 SOp 150 difference operator given by
76p -197 a 76,0 ~197 Lyx;h=j=0k=3Ajyx+jh-hj=0k+1Bjy'x+jh (23)
_ is defined as a unique integer p such that Cq, 01p, and cp+1#£0 where Cq is
0 0 a constant column vector defined by
B; = 6(p + 3) 0 c0=A0+A1+A2+..+Ak
| 76p —197 c1=A1+2A2+3A3+..+kAk-BO+B1+B2+..+Bk+1
cq=1q!A1+2qA2+3qA3+...+kqAk-1q-1!B1+2q-1B2+3q-1B3+...+k+1g-
and Ym-1, Ym, Fm-1, Fm and Fm+1 are column vectors defined by 1Bk+1} (24)
. For q=015 we have
IIm—] = |:y”_1:| K’i? = {y’“—l :| Fm—l = |:.fn_1:| 3
Ya ) Yua | 5] Co=D A=A+ A+ 4, + 4
. . =0
F _ fn+l F _ jn+3
m f ml T f 8p+5 4(2]_)—7) |
n+2 J n+a - -
= ’ 16p-23 16p-23 |, lo(2p+31) |, 0] _|°
= + T p+ +| |=
Equation (21) can also be expressed as 14p+17 3 9(] 2p+1 1) 76p 197 1 0
Cspis 42p-7) 76p —197 76p —197
16p-23  16p—23 I
14p 117 9(12p 111) [y”_ﬂ ¢ _;jAj —;;Bj =(A4,+24, +34,)—(B, + B, + B, + B,)
76p —197 76,0 -197 Ya + _42p-7) . 0_1 [ 2y 1 [-—2 2Ap+2) 0 N .
_I| 1ep-23 | =30 O s ] 23| 160-23 || g(p=3) (|2
L 0 20 bttt [ B2 B ekl
9(2p +31) L2 | B 16p-23 Jni (D) ) 1 o
76p —197 Voea 0o 0 fo o= R g BT D D)4 (6 426,436, + 46
o2 2(p+2) 42p-17) |
16p-23  16p-23 1| 16p-23 > 0
h ) _ ' P Pl H2p+31 ?
150p 150 {m} al| 9(12p+11) +2) 7(6;’—197) +3)
4+ L76p-197  76p-197 || [ ] 4 76p—197

Cite The Article: Buhari Alhassan, Hamisu Musa (2025). A Higher Order A-Stable Diagonally Implicit 2-Point Super Class of Block Extended

Backward Differentiation Formula for Solving Stiff Initial Value Problems. Matrix Science Mathematic, 9(2): 34-43.




Matrix Science Mathematic (MSMK) 9(2) (2025) 34-43

22 2Ap+2)
22p - AR A 0
1 l - } l6p—23 16p-23 “[o
-—||16p-23 +(2 +(3 i +(4){ 6(p+3):| ,[}
1 150p 150 0
0 76p-197 T 76p—197 76p =197
L\:i{f;r)j)*i(j;?j):%(j)l+2]Dz+311)1)*%(G\ +2’,’G?+3:‘G1+4264)
_#2p-7) S
:l 16p—-23 +(2)3 9(2p+31) +(3)3 0
31| 912p+11) e 1
- 76p—197
76p—197 -
22 [ 2Ap+2)
22p - 0
! { 2| 16p—-23 )| 16p-23 | 6(p+3) [||0
2 16”23}(2) 1300 [T 150 +(4){ p+3 0
0 760197 76p-197 76p-197 H
"4:i(j;?J)fi(j;?J):%(Dx+241)z+34D1)*%(G1+21Gz+3161+4}64)
_42p-7) |
1 16p—-23 4 9(25 431 .| 0
“ 4| 9(12p+11) ()| 220+31) 1 (3) |
- 76p—197
76p—197
20 S ‘ 2(pi2) 0 C117+414p
-3 {]6023} Qr| A e 5 44)1{6(“3)} —{ 616;)23}
Lt 76p-197 “76p-197 76p =197 0

¢, = ; ('}451)—2 (j;?’):é(i), +2°D, +3‘Dq)7$(6, +24G, +3'G, +4'G,)
4(2p-7) | )
_ 0
~ 1| J6p =23 1 oy| 9(2p +31) |4 (3)
st 912p+11) 76p 197 |
76p—197
o 2p+2) 1 71452p ]
el 2 ol 7 Lt | R
T6p-197 T6p 197 10 76-197 |

Therefore, the 2DSBEBDF method is of order four with error constant
given as

1 71+452p
e =| 1516p—-23
| 162p+111
10 76-197

Definition 2 (Consistency): a linear Multistep method (LMM) is said to
be consistent if it has order p=1. It follows that a LMM is consistent if and
only if the following conditions are satisfied [27]:

ij=0kAj=0

ii.j=0KjAJ=j=0k+1Bj
Theorem 1: The derived 2-point diagonally implicit super class of block

extended backward differentiation formula (2DSBEBDF) method is
consistent.

Proof:

To show that the 2DSBEBDF scheme is consistent. It suffices to show that
the consistency conditions in definition 2 are satisfied. Let A0, A1, A2, A3,
A4, A5, BO, B1, B2, B3, B4, B5 be as previously defined, then

3
DA, = Ay + A+ A, + 4

j=t
~ 8p+5 _42p-7) |

| 16p-23 16p—23 0(2p +31 0| |0

T 14p+17 [T 9(2p11) {7(65_197) 11110
76p—197 76p —197

Thus, the first consistency condition in (i) is satisfied.

Similarly,

3
D JA; =4, +24, +34,

J=0
_H2p-7) | 3(8p-6)
| 16p-23 9020 +31) Ly V|| 16p-23
T 9(2p+11) 42){% +(3 17 11203p-11)
76p 197 76p—197
4
> B,=B +B,+B,+B,
=0
2p ) 2(p+2) 3(8p—6)
B 16p-23 16p-23 | 16p-23
—[160—23}’ 1500 |7 150 {72(’):327} 12(13p -11)
76p—-197 760 -197 P 76p —197

Therefore, the second consistency condition in (ii) is satisfied, hence in
accordance with definition 2, the 2DSBEBDF method is consistent.

4. STABILITY ANALYSIS OF THE METHOD

In this section, we investigate the stability of the method based on A-
stability and zero-stability, using the matrix representation of (12) as

_ 0 0
10 [y,ﬂ _92p+31) [m}
_0 1 yn+2 _ 76)9—197 yn+2 .
[ 8p+5 42p-7)

16p-23  16p-23
C14p+17 9(12p+11) [yn_i

76p—-197  76p-197 || V. |

[ 22p |
h 16p-23 | Fm

0 0 1,

2 2(p+2)

16p-23  16p—23 _
" 1500 150 {m}

_T6p-197  76p-197 || fua]

0 0.,
i 6lp+3) {fw}

| 76p—197 Jore 25
which is equivalent to

1

9(2p +31) [m}
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8p+5 42p-7)
16p-23  16p-23
C14p+17  Y12p+11) | | Van
76p-197  76p-197 || v,

22p .

ho 16p—23 || fan
0 0 /
2 2(p+2)

16p-23  16p-23 _
M 1s0p 150 |] /s
| 76p-197  76p-197 || fo.2
0 0.
Al 6(p+3) 0 Fes
| 76p-197 S

(26)
We define the k-block, r-point method (18) in general matrix form as
A0Ym=A1Ym-1+hBOFm-1+B1Fm+B2Fm+1, 27

where,

|
9(2p +31)
76p —197

AO

(27) and using hA=h, we obtain:

A0Ym=A1Ym-1+hBOYm-1+B1Ym+B2Ym+1,
(28)

AD,Al'BO,B1

where and Bl are as previously defined and

Vs | | Yomes Ya(me1yr
Yira Yomea Ya(me1y2

Y

m+l

To obtain the characteristics polynomial, the determinant of the following
equation is computed in MATLAB 18 environment which is given by:

th=detA0-hB1-hB2t-A1+hB0 (29)
Therefore, (29) is evaluated and is equivalent to

th=-116p-2376p-197312h22t2+3432h22t+660h2t2-36h2t2+396h2pt-
3228h2t2+824h2t-4702ht2-12162t2-308h2-
6876pth+6668ht2+21922t+4900pt2-374hp+2356ht-9762-3824pt-
4531t2-1076p+4550t-19=0 (30)

To demonstrate the zero-stability of our proposed 2DSBEBDF method, we
substitute h=0 into the characteristics polynomial (30), yielding the first
characteristics polynomial as:

t,0=--12162t2+21922t+4900pt2-9762-3824pt-4531t2-1076p+4550t-
1916p-2376p-197=0 (31)

Solving (31) for t, the following roots are obtained:
t=1,t=9762+1076p+1912162-4900p+4531 (32)

Definition 3 (Zero-stability): A linear multistep method (LMM) is said to
be zero-stable if no root of the first characteristics polynomial, t has
modulus greater than one, and if every root with modulus one is simple
(Musa, et al., 2025).

By substituting two distinct values of the free parameter into equation
(32), we obtain the roots of the first characteristic polynomial given in

8p+5 4(2,0 — 7) equation (32) as:
16 23 160 —23 i.When p=12
4 = 14'10/3 +17 9(12pp +1 1) t=1,t=0.3358490566

76p ~197 76p-197

Bo{ 16,0 23
2p +2)
B 16p 23 16p-23
! 150p 150
76,0—]97  76p—197
B, = p+3 Y = Y
76p —197 " Ve

mel yn_l -
Yn
F — f;’H—l

F _ f;1+3
m+ f
n+4

By substituting the linear test ordinary differential equation y'=Ay into

Yomr | _| Valmayn

yZm—Z yZ(mfl)JrZ
f-2m+1

<f2m+2

f2mfl — fZ(m—l)+1
fgm_z ./‘E(m—l}ﬁ

f2m+3 _ fi2(m+l}+1
f2m+4 fz(m+1}+2

ii. Whenp=-34
t=1,t=-0.02688413948

According to Definition 3, the 2DSBEBDF method is zero-stable, as the
absolute value of all roots of the first characteristic polynomial is less than
or equal to 1, and the root with a modulus of 1 is simple (i.e., unique).

Definition 4 (A-stability): A linear multistep method (LMM) is said to be
A-stable if the stability region covers the entire left-hand half-plane
(Alhassan, et al., 2024).

According to the study, a method with a region of absolute stability
covering the entire negative left-hand complex plane imposes no step-size
constraints for stability (Lambert, 1973). However, achieving A-stability
severely limits the choice of linear multistep methods (LMMs), due to
Dahlquist's second barrier in which dictates that A-stable LMMs cannot
exceed order 2 (Dahlquist, 1963). This limitation motivates the search for
higher-order LMMs with improved stability properties

To determine the region of absolute stability (RAS) of the method (18)
using a locus boundary, the boundary of absolute stability region of the
method when p=-3/4 and p=1/2 is determined by substituting t=ei6 into
equation (30). The graphs of the stability regions for the method plotted
in MAPLE environment is given below:

Unstable Region Stable Region

10

Unstable Region
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Figure 2: Stability Region for 2DSBBDF(p=-3/4)
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Figure 3: Stability Region for 2DSBEBDF(p=1/2)

Thus, the regions of absolute stability (RAS) of the 2DSBEBDF method are
the areas outside the circular boundary. Notably, the RAS covers the entire
left-half of the complex plane, indicating that the 2DSBEBDF method is A-
stable. Having fulfilled this A-stability criterion, the method is well-suited
for numerically integrating stiff problems.

5. IMPLEMENTATION OF THE METHOD

The Newton'’s iteration is applied for the implantation of the 2DSBEBDF
method. The description of the iteration is given below, we first start by
defining the error.

Definition 5 (Absolute Error): Let yi and yxi be the approximate and
theoretical solutions of the differential equation (1) respectively. Then the
absolute error is defined and given by

errorit=yit-yxit (33)
The maximum error is defined by

MAXE:maxylsisTmaxerroritwlsisN, (34)
where T is the total number of steps and N is the number of equations.
Define

F1=yn+1+2216-23hfn+1-2216-23hfn-2+216-23hfn+2-1
F2=yn+2+92+3176-197yn+1+15076-197hfn+2-15076-197hfn+1-6+376-
197hfn+3-2}, (35)

where
1=8p+516p-23yn-1+42p-716p-23yn

2=-14p+1776p-197yn-14912p+1176p-197yn },
(36)

are the backvalues. Let yn+ji+1, j=1,2 denote the i+1th iterative values of
yn+j and define

en+ji+1=yn+ji+1-yn+ji, j=1,2 (37
The Newton'’s iteration for the 2DSBEBDF scheme takes the form:
yn+ji+1=yn+ji-F'jyn+ji-1Fjyn+ji, j=1,2 (38)

This equation (38) takes the form:

F'jyn+jien+ji+1=-Fjyn+ji, j=1,2 (39)
The matrix representation of (39) is equivalently written as
.2k, 2Ap+2)h s
16p—23 dv,,, 16p—-23 oy, Vo
9(2p+31)  150ph  Of,., 150h &, , "
76p-197 T6p—-197dy,,, 76p-197 3y, || Vae2 | _
-1 0
_9(2p+31) 150 Vs
76p—197 760 =197 || Vu2
[ 2 2(p+2)
16p-23  16p-23 |
150p 150 S

| 76p-197  76p—197 | | fon

0 0], 0 2P |
W 6(p+3) 0 Fos | BT 16p-23 | Jun
76p —197 Jord 1O 0 I,
8p+5 42p-17) ]|
16p-23  16p-23
C Mp+17  9(12p+11) || Van
76p-197  16p-197 || ¥, o)

Thus, a computer code written in C-programming language is degined for
the numerical implementation of equation (40) only when p=1/2.

6. TEST PROBLEM AND NUMERICAL RESULT

This section utilizes C programming language to test the developed
method on stiff systems of ordinary differential equations (ODEs),
assessing its efficiency and reliability. These types of problems are
prevalent in engineering and physical sciences, particularly in areas such
as reaction kinetics, string vibrations, electrical circuits, and so on.

Problem 1: This system of stiff oscillatory problem is considered:
y1'=-2yl+y2+2sinx,
y2'=998y1-999y2+999cos X -sin X,

y10=2, 0=x<10,
y20=3.

Whose eigenvalues are 1=-1 and 2=-1000 and its corresponding exact
solution is given by:

yl=2e-x+sin x ,y2=2e-10x+cos x.

Problem 2: This is the linear stiff IVP:

y0=1, 0sx<2
y0=-10,

yl'=y2,
y2'=-200y1-201y2,
The exact solution is given by:
y1=1199e-200x+200199e-x,y2=-200199e-x+200199€-200x,
The eigenvalues of the differential equations are -1 and -200.
Source: Artificial Problem.
Problem 3: Consider the following first order linear stiff IVP of the form:
y1'=-15y1-14y2,
y2'=-14y1-15y2,

y10=1, 0<x<10
y20=0,

The exact solution is given by:
y1=12e-29x+12e-x,y2=12e-29x-12e-2Xx,

The eigenvalues of the differential equations are -1 and -29.
Source: Artificial Problem.

Problem 4: This is a physical stiff problem taken from [33]:
y1'=-3100y1, y10=50, 0sx<20
y2'=3100y1-350y2, y20=0.

The exact solution is given by:
y1=50e-3100x,y2=50e-350-1+e3100x.

The eigenvalues of the differential equations are -6100, and -3100.

The numerical results for the stiff problems given are presented in Table
3-5. The problems are solved using our proposed 2DSBEBDF method
when p=1/2 and the 2-point diagonally implicit block backward
differentiation formula (2DBBDF) developed by (Zawawi, et al., 2012). For
easy referencing the 2DBBDF is expressed as:

yn+1=-13yn-1+43yn+23hfn+1
yn+2=211yn-1-911yn+1811yn+1+611hfn+2} (41)

This scheme is shown to be A-stable, consistent and convergent. The
following notations are used in the tables:

H: Step Size
MAXE: Maximum Absolute Error
TS: Total Number of Step

CPU TIME: Computation Time in seconds
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MTD: Methods Used. Formula in (Zawawi, et al.,, 2012).

2DBBDF: 2-point Diagonally Implcit Block Backward Differentiation 2DBBDF: 2-point Diagonally Implcit Super Class of Block Extended

Backward Differentiation Formula (our proposed method).

Table 3: Numerical Result for Problem 1.

H MTD TS MAXE CPU TIME
102 2DBBDF 500 1.70236E+093 3.34300E-004
2DSBEBDF 500 7.70428E-002 4.31200E-005
10-3 2DBBDF 5000 2.08995E+101 3.42100E-003
2DSBEBDF 5000 3.58395E-006 4.67400E-004
104 2DBBDF 50000 1.50076E-004 3.75200E-002
2DSBEBDF 50000 3.59824E-008 4.14400E-003
10-5 2DBBDF 500000 1.50065E-005 4.30600E-001
2DSBEBDF 500000 3.59982E-010 4.61800E-002
106 2DBBDF 5000000 1.50066E-006 4.71100E+001
2DSBEBDF 5000000 3.59979E-012 5.25600E-001
Table 4: Numerical Result for Problem 2.
H MTD TS MAXE CPU TIME
e 2DBBDF 100 1.42035E+007 3.63200E-003
2DSBEBDF 100 1.02086E+000 2.31000E-005
10-3 2DBBDF 1000 7.57316E-002 3.54800E-002
2DSBEBDF 1000 3.68866E-002 2.55600E-004
10-4 2DBBDF 10000 1.40727E-002 3.88200E-002
2DSBEBDF 10000 6.77281E-004 2.81500E-003
10-5 2DBBDF 100000 1.47164E-003 3.20600E-001
2DSBEBDF 100000 7.18833E-006 3.37200E-002
e 2DBBDF 1000000 1.47809E-004 4.51100E-001
2DSBEBDF 1000000 7.23122E-008 3.83900E-001
Table 5: Numerical Result for Problem 3.
H MTD TS MAXE CPU TIME
10-2 2DBBDF 500 3.00703E-002 4.02800E-003
2DSBEBDF 500 2.81166E-002 2.42800E-004
10-3 2DBBDF 5000 9.95422E-003 4.29300E-003
2DSBEBDF 5000 6.88539E-004 2.78600E-004
v 2DBBDF 50000 1.06267E-003 4.66900E-002
2DSBEBDF 50000 7.50580E-006 3.10800E-003
10-5 2DBBDF 500000 1.06943E-004 4.90600E-002
2DSBEBDF 500000 7.57075E-008 4.52600E-002
10-6 2DBBDF 5000000 1.07011E-005 5.74400E-001
2DSBEBDF 5000000 7.57727E-010 4.99400E-001
Table 6: Numerical Result for Problem 4.
H MTD TS MAXE CPU TIME
10-2 2DBBDF 1000 1.35080E-002 2.82600E-003
2DSBEBDF 1000 2.42438E-002 3.14200E-004
10-3 2DBBDF 10000 1.35298E-003 2.38300E-002
2DSBEBDF 10000 2.42994E-007 3.66700E-003
10-4 2DBBDF 100000 1.35320E-004 2.26100E-002
2DSBEBDF 100000 2.42994E-009 3.29100E-003
10-5 2DBBDF 1000000 1.35323E-005 2.12700E-001
2DSBEBDF 1000000 2.43048E-011 3.09600E-002
10-6 2DBBDF 10000000 1.35290E-006 2.37400E-001
2DSBEBDF 10000000 2.39784E-013 2.31800E-001
In order to visually demonstrate the efficancy of our method, graphs are generated. Below are the graphs illustrating the scaled maximum error
depicting the relationship between MAXE and H for the tested problems for each individual problem.
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7. DISCUSSION ON THE RESULT

The provided tables present the numerical results obtained for various
selected test problem using two different numerical methods, including 2-
point Diagonally Implicit Block Backward Differentiation Formula
(2DBBDF), and 2-point Diagonally Implicit Superclass Block Extended
Backward Differentiation Formula (2DSBEBDF). The results are analyzed
based on the step size (H), total number of steps (TS), maximum error
(MAXE), and CPU time.

For each test problem, as the step size decreases, the total number of steps
increases significantly, reflecting a finer discretization of the domain.
Correspondingly, the maximum error decreases, indicating higher

accuracy with smaller step sizes. Notably, the 2DSBEBDF method
generally exhibits lower maximum errors compared to the 2DBBDF
method across different step sizes, suggesting superior accuracy.

However, it's important to consider the computational efficiency of the
methods, as reflected in the CPU time. As expected, the CPU time increases
with decreasing step size, indicating higher computational costs for finer
discretization. Additionally, for each problem tested, the 2DSBEBDF
method tends to have lower CPU times compared to the 2DBBDF method.

Overall, the results demonstrate the trade-off between accuracy and
computational cost. While the 2DSBEBDF method generally offers
superior accuracy, it may require slightly less computational resources
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compared to the 2DBBDF method. These findings provide valuable
insights for selecting an appropriate numerical method based on the
desired balance between accuracy and computational efficiency for
specific problem instances.

8. CONCLUSION

The diagonally implicit 2-point super class of block extended backward
differentiation formula (2SBEBDF), designed to efficiently handle stiff
ODEs is developed. The method extends the concept of introducing an
additional super future point to the existing 2-point super class of block
backward differentiation formula, resulting in higher-order A-stable and
more accurate block scheme. The derivation process, order
determination, and stability analysis of the 2SDBEBDF method is
presented. The paper establishes that the 2DSBEBDF method is of fourth
order with specific error constant. The stability analysis explores both
zero and A-stability, confirming that the method is zero-stable, and A-
stable, making it suitable for solving first-order stiff initial value problems.
Implementation details in Dev C++ compiler environment using Newton's
iteration is provided, and the methods are tested on various stiff ODEs. The
numerical simulation of results demonstrates the effectiveness and
efficiency of the 2DSBEBDF method, outperforming existing 2-point
diagonally implicit block backward differentiation formulae (2DBBDF)
algorithms in terms of accuracy and computational cost.
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