
Matrix Science Mathematic (MSMK) 9(2) (2025) 49-55 

 

 

Quick Response Code Access this article online 

 

Website: 

www.matrixsmathematic.com 

DOI: 

10.26480/msmk.02.2025.49.55 

 
Cite The Article: Aslıhan Sezgin, İbrahim Durak (2025). Soft Intersection-Symmetric Difference Product Of Groups. Matrix Science Mathematic, 9(2): 49-55. 

 

 
ISSN: 2521-0831 (Print) 
ISSN: 2521-084X(Online) 
CODEN: MSMAD 
 
REVIEW ARTICLE 

 

Matrix Science Mathematic (MSMK) 
  

DOI: http://doi.org/10.26480/msmk.02.2025.49.55 

 

 

SOFT INTERSECTION-SYMMETRIC DIFFERENCE PRODUCT OF GROUPS 
Aslıhan Sezgina*, İbrahim Durakb 
 
aDepartment of Mathematics and Science Education, Faculty of Education, Amasya University, Amasya, Türkiye 
bDepartment of Mathematics, Graduate School of Natural and Applied Sciences, Amasya University, Amasya, Türkiye 
*Corresponding Author Email: aslihan.sezgin@amasya.edu.tr 
 
This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original work is properly cited. 

ARTICLE DETAILS  ABSTRACT  

Article History: 
 
Received 23 April 2025 
Revised 18 May 2025 
Accepted 08 June 2025 
Available online 10 July 2025 

 Soft set theory constitutes a mathematically robust and structurally versatile formalism for modeling real-
world systems characterized by epistemic uncertainty, vagueness, and parameter-contingent variability—
ubiquitous features across decision theory, engineering, economics, and information sciences. At the core of 
this framework lies a spectrum of algebraic operations and binary product constructions that endow the soft 
set universe with a rich internal structure, capable of encapsulating intricate interdependencies among 
parameters. In this context, we introduce and investigate a novel product of soft sets, termed the soft 
intersection–symmetric difference product, formulated specifically for soft sets whose parameter domains 
are structured as groups. This product is rigorously defined and analyzed within an axiomatic framework that 
ensures compatibility with generalized soft subsethood and equality relations. The structural analysis of the 
soft intersection–symmetric difference product includes the examination of essential algebraic properties—
such as closure, associativity, commutativity, and idempotency. In addition, the interplay between this 
product and pre-existing soft products, is explored to regarding the subsets. Theoretical investigations reveal 
that the operation not only respects the algebraic architecture of the underlying group-parameterized domain 
but also induces a cohesive and well-behaved algebraic system on the collection of soft sets. This analytical 
framework yields two central algebraic insights: (i) the internal algebraic cohesion of soft set theory is 
significantly enhanced by embedding the newly defined product into a logically sound and operation-
preserving environment; and (ii) the product itself possesses the formal potential to serve as a foundational 
construct for a generalized soft group theory, wherein soft sets over group-parameter spaces mimic the 
axiomatic behavior of classical group-theoretic constructs through suitably defined soft operations. Given that 
the maturation of soft algebraic systems is contingent upon the rigorous formulation of operations satisfying 
structurally meaningful axioms, the contributions of this study represent a notable advancement in the 
algebraic consolidation of soft set theory. Beyond theoretical enrichment, the proposed operation offers 
tangible utility in the construction of abstract algebra-based soft computational models, with applications 
spanning multi-criteria decision-making, algebraically-driven classification mechanisms, and uncertainty-
aware data analysis governed by group-parametrized semantic domains. Thus, the framework established 
herein not only extends the theoretical boundaries of soft algebra but also fortifies its role as a foundational 
tool in both pure and applied mathematical discourse 
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1. INTRODUCTION 

A vast array of advanced mathematical frameworks has been devised to 

represent and analyze systems permeated by uncertainty, vagueness, and 

indeterminacy—phenomena that frequently emerge in engineering, 

economics, social sciences, and medical diagnostics. Despite the 

conceptual sophistication of such paradigms, including fuzzy set theory 

and probabilistic models, critical epistemological and algebraic 

limitations persist. Fuzzy set theory, as pioneered hinges on subjectively 

chosen membership functions, while probabilistic approaches 

presuppose the availability of repeatable events and known distributional 

profiles—assumptions which are often untenable in real-world contexts 

governed by epistemic ambiguity (Zadeh, 1965). In a groundbreaking 

contribution, circumvented these structural constraints by formulating 

soft set theory as a mathematically elastic yet axiomatically minimalistic 

framework that models uncertainty relative to parameter sets, rather 

than probabilistic or membership-theoretic axioms (Molodtsov, 1999).   

The initial formalism of soft sets has undergone systematic algebraic 
refinement since 2003. Foundational operations such as union, 
intersection, and AND/OR-products were introduced, while 
recontextualized these operations through information-theoretic lenses, 
rendering them compatible with relational and multivalued contexts 
(Maji et al., 2003; Pei et al., 2005). This study, extended the operational 
schema by defining restricted and extended variants, enhancing the 
algebraic granularity of soft systems (Ali et al., 2009). Subsequent 
research—including the works of further deepened the algebraic 
infrastructure of soft set theory, resolving semantic ambiguities and 
introducing a spectrum of new product operations and generalized 
equalities (Yang, 2008; Feng et al., 2010; Jiang et al., 2010; Ali et al., 2011; 
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Jiang et al., 2010; Ali et al., 2011; Neog and Sut, 2011; Fu, 2011; Ge and 
Yang, 2011; Singh and Onyeozili, 2012a–d; Zhu and Wen, 2013; Onyeozili 
and Gwary, 2014; Sen, 2014). Recent developments have significantly 
enriched the algebraic foundations of soft set theory through the 
introduction of a wide array of novel operations, each rigorously analyzed 
within formal algebraic frameworks. Noteworthy contributions in this 
regard include the works of whose investigations have collectively 
established a robust and extensible algebraic landscape for the continued 
advancement of soft set theory (Eren and Çalışıcı, 2019; Stojanović, 2021; 
Sezgin et al., 2023a, 2023b; Sezgin and Dağtoros, 2023; Sezgin and 
Demirci, 2023; Sezgin and Çalışıcı, 2024; Sezgin and Yavuz, 2023a, 2023b; 
2024; Sezgin and Çağman, 2024, 2025; Sezgin and Sarıalioğlu, 2024a, 
2024b; Sezgin and Şenyiğit, 2025). 

The algebraic formalization of soft equality and soft inclusion has evolved 
into a cornerstone of modern soft algebra. The classical notion of soft 
subsets proposed was generalized and developed soft congruence 
relations that embedded equivalence structures into the soft set universe 
(Maji et al., 2003; Pei and Miao, 2005; Feng et al., 2010; Qin and Hong, 
2010). This study, advanced the algebraic semantics by introducing J-soft 
equalities and new distributive frameworks, and revealed profound 
algebraic divergence in their definition of L-soft subsets and L-equalities, 
wherein traditional distributive identities fail to hold universally 
(Çağman andi Enginoğlu, 2010; Liu et al., 2012). These foundational 
results were extended by who rigorously categorized soft subset types 
and established associativity, commutativity, and distributivity criteria 
under L-equality, proving that certain classes of quotient soft algebras 
admit commutative semigroup structures (Feng et al., 2013). In addition, 
the interplay between this product and pre-existing soft products, is 
explored to regarding the subsets. Further generalizations—such as g-
soft, gf-soft, and T-soft equalities—have been developed within lattice-
enriched frameworks by marking a paradigm shift toward lattice-
theoretic and congruence-based perspectives (Abbas et al., 2014, 2017; 
Alshami, 2019; Alshami et al., 2020).  

In a pivotal intervention, reconstructed the definitional foundations of 
soft set operations to rectify inconsistencies in the original formulation, 
thereby enabling a robust algebraic treatment (Çağman andi Enginoğlu, 
2010). Parallel developments have focused on soft products over 
algebraic domains. The soft intersection–union product has been 
extended to rings, semigroups and groups, yielding structurally 
consistent notions of soft union rings, semigroups, and groups (Sezer, 
2012; Sezgin, 2016; Muştuoğlu et al., 2016). Conversely, the soft union–
intersection product has been investigated in group-theoretic, 
semigroup-theoretic, and ring-theoretic contexts, with algebraic 
properties contingent on the behavior of identity and inverse elements in 
the parameter set (Kaygısız, 2012; Sezer et al., 2015; Sezgin et al., 2017). 

In response to these advances, the present study proposes a novel 
product of soft sets—the soft intersection–symmetric difference 

product—formulated over soft sets whose parameter domains are 

endowed with group structure. This operation is subjected to a 
comprehensive algebraic examination, emphasizing its compatibility with 

generalized soft inclusion and equality relations. The structural analysis 

of the soft intersection–symmetric difference product includes the 
examination of essential algebraic properties—such as closure, 

associativity, distributivity (both left and right), and compatibility with 

identity and absorbing elements. Moreover, the proposed operation is 
subjected to a comprehensive comparative assessment against previously 

formulated soft products within the structured hierarchy of soft subset 

classifications, providing enhanced theoretical clarity regarding their 

respective expressive strengths and algebraic coherence. In parallel, a 
rigorous examination of the product’s interaction with both the null and 

absolute soft sets is undertaken to further articulate its foundational 

structural properties. Our results demonstrate that the proposed product 
adheres to desirable axiomatic criteria, while introducing a structurally 

coherent mechanism for combining soft information across parametric 

group domains. The product facilitates a natural extension of classical 
algebraic concepts to the soft domain, allowing the construction of soft 

analogues of group-theoretic entities, and laying the groundwork for a 

new mathematical branch—soft group theory—defined through 
rigorously axiomatized binary operations. The remainder of this 

manuscript is structured as follows: Section 2 revisits foundational 

definitions and formal preliminaries. Section 3 introduces the soft 

intersection–symmetric difference product and develops its algebraic 
theory in detail. Section 4 synthesizes the primary results and delineates 

directions for future research aimed at expanding the algebraic universe 

of soft sets and exploring their applications in abstract algebra and 
uncertainty modeling. 

2. PRELIMINARIES 

This section presents a rigorous and methodical re-evaluation of the 
foundational definitions and algebraic underpinnings that serve as the 
formal substrate for the theoretical constructs elaborated in the 
subsequent discourse. While the original conception of soft set theory was 
introduced as a parameterized generalization for modeling uncertainty, 
its formal definitional schema and operational calculus were substantially 
restructured in the influential reformulation (Molodtsov, 1999; Çağman 
andi Enginoğlu, 2010). Their axiomatic revision endowed the theory with 
heightened structural coherence and broadened its applicability across 
diverse algebraic and decision-theoretic settings. The present 
investigation adopts this refined formalism as the axiomatic foundation 
upon which all further constructions are based. Accordingly, every 
algebraic development, operational specification, and theoretical 
generalization in the forthcoming sections is rigorously articulated within 
this enhanced framework, ensuring both internal consistency and formal 
adherence to contemporary standards in soft algebraic systems. 

Definition 2.1. (Çağman and Enginoğlu, 2010) Let 𝐸 be a parameter set, 
𝑈 be a universal set, 𝑃(𝑈) be the power set of 𝑈, and ℋ ⊆ 𝐸. Then, the soft 
set 𝒻ℋ over 𝑈 is a function such that 𝒻ℋ: 𝐸 → 𝑃(𝑈), where for all 𝑤 ∉ ℋ, 
𝒻ℋ(𝑤) = ∅. That is, 
 

𝒻ℋ = {(𝑤, 𝒻ℋ(𝑤)): 𝑤 ∈ 𝐸}  

From now on, the soft set over 𝑈 is abbreviated by 𝒮𝒮. 

Definition 2.2. (Çağman andi Enginoğlu, 2010) Let 𝒻ℋ be an 𝒮𝒮. If 
𝒻ℋ(𝑤) = ∅ for all 𝑤 ∈ 𝐸, then 𝒻ℋ is called a null 𝒮𝒮 and indicated by ∅𝐸 , 
and if 𝒻ℋ(𝑤) = 𝑈, for all 𝑤 ∈ 𝐸, then 𝒻ℋ is called an absolute 𝒮𝒮 and 
indicated by 𝑈𝐸 . 
 
Definition 2.3. (Çağman andi Enginoğlu, 2010) Let 𝑓ℋ be a soft set over 𝑈. 
Then, the complement of 𝑓ℋ denoted by 𝑓ℋ

c, is defined by the soft set 
𝑓ℋ

c: 𝐸 → 𝑃(𝑈) such that 𝑓ℋ
𝑐(𝑒) = 𝑈\𝑓ℋ(𝑒) = (𝑓ℋ(𝑒))′, for all 𝑒 ∈ 𝐸. 

 
Definition 2.4. (Çağman andi Enginoğlu, 2010) Let 𝒻ℋ and ℊℵ be two 𝒮𝒮s. 

Then, the difference of 𝒻ℋ and ℊℵ is the 𝒮𝒮 𝒻ℋ \̃ℊℵ, where (𝒻ℋ \̃ℊℵ)(𝑤) =

𝒻ℋ(𝑤)\ℊℵ(𝑤), for all 𝑤 ∈ 𝐸. 
 
Definition 2.5. (Çağman andi Enginoğlu, 2010) Let 𝒻ℋ and ℊℵ be two 𝒮𝒮s. 
If 𝒻ℋ(𝑤) ⊆ ℊℵ(𝑤), for all 𝑤 ∈ 𝐸, then 𝒻ℋ is a soft subset of ℊℵ and indicated 
by 𝒻ℋ ⊆̃ ℊℵ. If 𝒻ℋ(𝑤) = ℊℵ(𝑤), for all 𝑤 ∈ 𝐸, then 𝒻ℋ is called soft equal to 
ℊℵ, and denoted by 𝒻ℋ = ℊℵ. 
 
Definition 2.6. (Sezgin et al., 2025b) Let 𝒻𝐾 and ℊℵ be two 𝒮𝒮s. Then, 𝒻𝐾 is 
called a soft S-subset of ℊℵ, denoted by 𝒻𝐾 ⊆̃𝑆 ℊℵ if for all 𝑤 ∈ 𝐸, 𝒻𝐾(𝑤) =
ℳ and ℊℵ(𝑤) = 𝒟, where ℳ and 𝒟 are two fixed sets and ℳ ⊆ 𝒟. 
Moreover, two ЅЅs 𝒻𝐾 and ℊℵ are said to be soft S-equal, denoted by 
𝒻𝐾 =𝑆 ℊℵ, if 𝒻𝐾 ⊆̃𝑆 ℊℵ and ℊℵ ⊆̃𝑆 𝒻𝐾. 
 
It is obvious that if 𝒻𝐾 =𝑆 ℊℵ, then 𝒻K and ℊℵ are the same constant 
functions, that is, for all 𝑤 ∈ 𝐸, 𝒻𝐾(𝑤)= ℊℵ(𝑤) = ℳ, where ℳ is a fixed set. 

Definition 2.7. (Sezgin et al., 2025b) Let 𝒻𝐾 and ℊℵ be two 𝒮𝒮s. Then, 𝒻𝐾 is 
called a soft A-subset of ℊℵ, denoted by 𝒻𝐾 ⊆̃𝐴 ℊℵ, if, for each 𝒶, 𝒷 ∈ 𝐸, 
𝒻𝐾(𝒶) ⊆ ℊℵ(𝒷). 
 
Definition 2.8. (Sezgin et al., 2025b) Let 𝒻𝐾 and ℊℵ be two 𝒮𝒮s. Then, 𝒻𝐾 is 
called a soft S-complement of ℊℵ, denoted by 𝒻𝐾 =𝑆 (ℊℵ)𝑐, if, for all 𝑤 ∈ 𝐸, 
𝒻𝐾(𝑤) = ℳ and ℊℵ(𝑤) = 𝒟, where ℳ and 𝒟 are two fixed sets and ℳ =
𝒟′. 
 
From now on, let 𝐺 be a group, and 𝑆𝐺(𝑈) denotes the collection of all 𝒮𝒮s 
over 𝑈, whose parameter sets are 𝐺; that is, each element of 𝑆𝐺(𝑈) is an 𝒮𝒮 
parameterized by 𝐺. 

Definition 2.9. (Sezgin and Ay, 2025) Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. Then, the 
intersection-difference product 𝒻𝐺⨂𝑖/𝑑ℊ𝐺 is defined by  

(𝒻𝐺⨂𝑖/𝑑ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)\ℊ𝐺(𝓏))

𝑥=𝑦𝓏

, 𝑦, 𝓏 ∈ 𝐺 

for all 𝑥 ∈ 𝐺. 

For additional information on ЅЅs, we refer to (Aktas and Çağman, 2007; 
Alcantud et al., 2024; Ali et al., 2015; Ali et al., 2022; Atagün et al., 2019; 
Atagün and Sezer, 2015; Atagün and Sezgin, 2017; Atagün and Sezgin, 
2018; Atagün and Sezgin, 2022; Feng et al., 2008; Gulistan and Shahzad, 
2014; Gulistan et al., 2018; Jana et al., 2019; Karaaslan, 2019; Khan et al., 
2017; Mahmood et al., 2015; Mahmood et al., 2018; Manikantan et al., 
2023; Memiş, 2022; Özlü and Sezgin, 2020; Riaz et al., 2023; Sezer and 
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Atagün, 2016; Sezer et al., 2017; Sezer et al., 2013; Sezer et al., 2014; Sezgin 
and İlgin, 2024; Sezgin et al., 2022; Sezgin and Onur, 2024; Sezgin et al., 
2024; Sezgin and Orbay, 2022; Sezgin et al., 2019; Sun et al., 2008; Tunçay 
and Sezgin, 2016; Ullah et al., 2018; Sezgin et al., 2024a, 2024b). 

3. SOFT INTERSECTION–SYMMETRIC DIFFERENCE PRODUCT OF 
GROUPS 

In this section, we introduce a novel product off soft sets, termed the soft 
intersection–symmetric difference product, defined over parameter setss 
endowed with group structures. We undertake a thorough algebraic 
analysis aimed at rigorously characterizing the operation’s fundamental 
structural attributes. Special attention is devoted to elucidating the 
interplay between this product and various generalized soft equality 
relations, alongside the hierarchical classification of soft subsets under 
diverse inclusion frameworks. To bridge abstract theory with concrete 
insight, the exposition incorporates a curated collection of illustrative 
examples that demonstrate the operational dynamics and algebraic 
subtleties inherent to the product. Additionally, we explore the relation 
between the proposed product and some other certainn soft products with 
respect to the soft subsets, thereby clarifying its algebraic compatibility 
within the existing operational landscape. This examination effectively 
highlighs the proposed soft product’s structural coherence and potential 
for integration into more comprehensive soft algebraic systems. 

Definition 3.1:  
 
Let 𝒻𝐺 and ℊ𝐺  be two 𝒮𝒮s. Then, the soft intersection-symmetric difference 
product 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 is defined by 

 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

, 𝑦, 𝓏 ∈ 𝐺 

for all 𝑥 ∈ 𝐺. 

Note here that since 𝐺 is a group, there always exist 𝑦, 𝓏 ∈ 𝐺 such that 𝑥 =
𝑦𝓏, for all 𝑥 ∈ 𝐺. Let the order of the group 𝐺 be 𝑛, that is, |𝐺| = 𝑛. Then, it 
is obvious that there exist 𝑛 different combinations of writing styles for 
each 𝑥 ∈ 𝐺 such that 𝑥 = 𝑦𝓏, where 𝑦, 𝓏 ∈ 𝐺.  

Note 3.2: The soft intersection-symmetric difference product is well-
defined in 𝑆𝐺(𝑈). In fact, let 𝒻𝐺 , ℊ𝐺 , 𝓂𝐺 , 𝓀𝐺 ∈  𝑆𝐺(𝑈) such that (𝒻𝐺 , ℊ𝐺) =
(𝓂𝐺 , 𝓀𝐺). Then, 𝒻𝐺 = 𝓂𝐺 and  ℊ𝐺 = 𝓀𝐺, implying that 𝒻𝐺(𝑥) = 𝓂𝐺(𝑥) and 
ℊ𝐺(𝑥) = 𝓀𝐺(𝑥), for all 𝑥 ∈ 𝐺. Thereby, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                              = ⋂ (𝓂𝐺 (𝑦)∆𝓀𝐺(𝓏))

𝑥=𝑦𝓏

 

                              = (𝓂𝐺⨂𝑖/𝑠𝓀𝐺)(𝑥) 

Hence, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 =  𝓂𝐺⨂𝑖/𝑠𝓀𝐺. 

Example 3.3: Consider the group 𝐺 = {𝜌, 𝜏} with the following operation:  

∙ 𝜌 𝜏 

𝜌 𝜌 𝜏 

𝜏 𝜏 𝜌 

Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s over 𝑈= 𝐷2 = {< 𝑥, 𝑦 >:  𝑥2 = 𝑦2 = 𝑒, 𝑥𝑦 = 𝑦𝑥} =

{𝑒, 𝑥, 𝑦, 𝑦𝑥} as follows: 

𝒻𝐺 = {(𝜌, {𝑒, 𝑥}), (𝜏, {𝑥, 𝑦𝑥})} and  ℊ𝐺 = {(𝜌, {𝑥, 𝑦}), (𝜏, {𝑒, 𝑥, 𝑦𝑥})} 

Since 𝜌 = 𝜌𝜌 = 𝜏𝜏, (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝜌) = (𝒻𝐺(𝜌)∆ℊ𝐺(𝜌)) ∩ (𝒻𝐺(𝜏)∆ℊ𝐺(𝜏)) =

{𝑒}, and since 𝜏 = 𝜌𝜏 = 𝜏𝜌, (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝜏) =  (𝒻𝐺(𝜌)∆ℊ𝐺(𝜏)) ∩

(𝒻𝐺(𝜏)∆ℊ𝐺(𝜌)) = {𝑦𝑥} is obtained. Hence, 

𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = {(𝜌, {𝑒}), (𝜏, {𝑦𝑥})} 

Proposition 3.4:  

 

The set 𝑆𝐺(𝑈) is closed under the soft intersection-symmetric difference 

product. That is, if 𝒻𝐺 and ℊ𝐺  are two 𝒮𝒮s, then so is 𝒻𝐺⨂𝑖/𝑠ℊ𝐺. 

PROOF. It is obvious that the soft intersection-symmetric difference 

product is a binary operation in 𝑆𝐺(𝑈). Thereby, 𝑆𝐺(𝑈) is closed under the 

soft intersection-symmetric difference product. ◻ 

Proposition 3.5:  

 

The soft intersection-symmetric difference product is not associative in 

𝑆𝐺(𝑈). 

 
PROOF. Consider the group 𝐺 and the 𝒮𝒮s 𝒻𝐺 and ℊ𝐺 in Example 3.3, and 
let 𝒽𝐺 = {(𝜌, {𝑦𝑥}), (𝜏, {𝑒, 𝑥, 𝑦})} be an 𝒮𝒮 over 𝑈 = {𝑒, 𝑥, 𝑦, 𝑦𝑥}. 

Since 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = {(𝜌, {𝑒}), (𝜏, {𝑦𝑥})}, then 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)⨂𝑖/𝑠𝒽𝐺 = {(𝜌, {𝑒, 𝑦𝑥}), (𝜏, ∅)} 

Moreover, since ℊ𝐺⨂𝑖/𝑠𝒽𝐺 = {(𝜌, {𝑦, 𝑦𝑥}), (𝜏, {𝑒})}, then 

𝒻𝐺⨂𝑖/𝑠(ℊ𝐺⨂𝑖/𝑠𝒽𝐺) = {(𝜌, {𝑒, 𝑥, 𝑦𝑥}), (𝜏, {𝑥})} 

Thereby, (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)⨂𝑖/𝑠𝒽𝐺 ≠ 𝒻𝐺⨂𝑖/𝑠(ℊ𝐺⨂𝑖/𝑠𝒽𝐺).  ◻ 

Proposition 3.6:  
 
The soft intersection-union product is not commutative in 𝑆𝐺(𝑈). 
However, if 𝐺 is an abelian group, then the intersection-union product is 
commutative in 𝑆𝐺(𝑈). 
 
PROOF. Let 𝒻𝐺,  ℊ𝐺 be two 𝒮𝒮s and 𝐺 be an abelian group. Then, for all 𝑥 ∈
𝐺, 

(𝒻𝐺⨂𝑖/𝑠 ℊ𝐺)(𝑥) =  ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                = ⋂ (ℊ𝐺 (𝓏)∆𝒻𝐺(𝑦))

𝑥=𝓏𝑦

 

                                = (ℊ𝐺⨂𝑖/𝑠 𝒻𝐺)(𝑥) 

implying that 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = ℊ𝐺⨂𝑖/𝑠𝒻𝐺.  ◻ 

Proposition 3.7:  

 

The soft intersection-symmetric difference product is not idempotent in 

𝑆𝐺(𝑈). 

 

PROOF. Consider the 𝒮𝒮 𝒻𝐺 in Example 3.3. Then, 

𝒻𝐺⨂𝑖/𝑠𝒻𝐺 = {(𝜌, ∅), (𝜏, ∅)} 

implying that 𝒻𝐺⨂𝑖/𝑠𝒻𝐺 ≠ 𝒻𝐺. ◻ 

Proposition 3.8:  

 

Let 𝒻𝐺 be a constant 𝒮𝒮. Then, 𝒻𝐺⨂𝑖/𝑠𝒻𝐺 = ∅𝐺. 

 

PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴, where 

𝐴 is a fixed set. Hence, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠𝒻𝐺)(𝑥) = ⋂ (𝒻𝐺(𝑦)∆𝒻𝐺(𝓏))

𝑥=𝑦𝓏

= ∅𝐺(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠𝒻𝐺 = ∅𝐺. ◻ 

Remark 3.9:  

 

Let 𝑆𝐺
∗(𝑈) be the collection of all constant 𝒮𝒮s. Then, the soft intersection-

symmetric difference product is not idempotent in 𝑆𝐺
∗(𝑈) either. 

Proposition 3.10:  

 

Let 𝒻𝐺  be a constant 𝒮𝒮. Then, 𝒻𝐺⨂𝑖/𝑠∅𝐺 = ∅𝐺⨂𝑖/𝑠𝒻𝐺 = 𝒻𝐺. 

 

PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝐴, where 

𝐴 is a fixed set. Hence, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠∅𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆∅𝐺(𝓏))

𝑥=𝑦𝓏

= ⋂ (𝒻𝐺 (𝑦)∆∅)

𝑥=𝑦𝓏

= 𝒻𝐺 (𝑥) 

Thereby, 𝒻𝐺⨂𝑢/𝑠∅𝐺 = 𝒻𝐺. Similarly, for all 𝑥 ∈ 𝐺, 
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(∅𝐺⨂𝑖/𝑠𝒻𝐺)(𝑥) = ⋂ (∅𝐺(𝑦)∆𝒻𝐺 (𝓏))

𝑥=𝑦𝓏

= ⋂ (∅∆𝒻𝐺 (𝓏))

𝑥=𝑦𝓏

= 𝒻𝐺 (𝑥) 

Thereby, ∅𝐺⨂𝑖/𝑠𝒻𝐺 = 𝒻𝐺. 

Remark 3.11:  

 

∅𝐺  is the identity element of the soft intersction-symmetric difference 

product in 𝑆𝐺
∗(𝑈). Besides, the inverse of each element is itself in 𝑆𝐺

∗(𝑈) 

with respect to the soft intersction-symmetric difference product by 

Proposition 3.8.  

 

Proposition 3.12:  

 

Let 𝒻𝐺  be a constant 𝒮𝒮. Then, 𝒻𝐺⨂𝑖/𝑠𝑈𝐺 = 𝑈𝐺⨂𝑖/𝑠𝒻𝐺 = 𝒻𝐺
𝑐. 

 

PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝐴, where 

𝐴 is a fixed set. Hence, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠𝑈𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆𝑈𝐺(𝓏))

𝑥=𝑦𝓏

= ⋂ (𝒻𝐺 (𝑦)∆𝑈)

𝑥=𝑦𝓏

= 𝒻𝐺
𝑐(𝑥) 

Thereby, 𝒻𝐺⨂𝑢/𝑠𝑈𝐺 = 𝒻𝐺
𝑐. Similarly, for all 𝑥 ∈ 𝐺, 

(𝑈𝐺⨂𝑖/𝑠𝒻𝐺)(𝑥) = ⋂ (𝑈𝐺(𝑦)∆𝒻𝐺 (𝓏))

𝑥=𝑦𝓏

= ⋂ (𝑈∆𝒻𝐺 (𝓏))

𝑥=𝑦𝓏

= 𝒻𝐺
𝑐(𝑥) 

Thereby, 𝑈𝐺⨂𝑖/𝑠𝒻𝐺 = 𝒻𝐺
𝑐. 

Proposition 3.13:  

 

Let 𝒻𝐺 be a constant 𝒮𝒮. Then, 𝒻𝐺⨂𝑖/𝑠𝒻𝐺
𝑐 =  𝒻𝐺

𝑐⨂𝑖/𝑠𝒻𝐺 = 𝑈𝐺. 

 
PROOF. Let 𝒻𝐺 be a constant 𝒮𝒮 such that, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴, where 

𝐴 is a fixed set. Hence, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠𝒻𝐺
𝑐)(𝑥) = ⋂ (𝒻𝐺(𝑦)∆𝒻𝐺

𝑐(𝓏))

𝑥=𝑦𝓏

= 𝑈 = 𝑈𝐺(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠𝒻𝐺
𝑐 = 𝑈𝐺 . Similarly, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺
𝑐⨂𝑖/𝑠𝒻𝐺)(𝑥) = ⋂ (𝒻𝐺

𝑐(𝑦)∆𝒻𝐺(𝓏))

𝑥=𝑦𝓏

= 𝑈 = 𝑈𝐺(𝑥) 

Thus, 𝒻𝐺
𝑐⨂𝑖/𝑠𝒻𝐺 = 𝑈𝐺 .◻ 

Theorem 3.14:  

 

Let 𝒻𝐺  and ℊ𝐺  be two 𝒮𝒮s. Then, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝑈𝐺  if only if 𝒻𝐺 =𝑆 (ℊ𝐺)𝑐.  

 

PROOF. Let 𝒻𝐺 =𝑆 (ℊ𝐺)𝑐. Then, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝐴 and ℊ𝐺(𝑥) = 𝐵, 

where 𝐴 and 𝐵 are two fixed sets and 𝐴 = 𝐵′. Hence, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

= 𝑈 = 𝑈𝐺(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝑈𝐺. 

Conversely, suppose that 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝑈𝐺 . That is, (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = 𝑈𝐺(𝑥), 

for each 𝑥 ∈ 𝐺. Then, for all 𝑥 ∈ 𝐺, 

𝑈𝐺(𝑥) = (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

= 𝑈 

This implies that 𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏) = 𝑈, for all 𝑦, 𝓏 ∈ 𝐺. Thus, 𝒻𝐺 =𝑆 (ℊ𝐺)𝑐. ◻ 

Proposition 3.15:  

Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. Then, (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)
c

= 𝒻𝐺⨂𝑢/𝑠′ℊ𝐺. 

 

PROOF. Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. Then, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)
c
(𝑥) = ( ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

)

′

 

                                = ⋃ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))
′

𝑥=𝑦𝓏

 

                                = ⋃ (𝒻𝐺 (𝑦)∐ℊ𝐺(𝓏))

𝑥=𝑦𝓏

             

                                = (𝒻𝐺⨂𝑢/𝑠′ℊ𝐺)
𝑐
(𝑥) 

Thus, (𝒻𝐺⨂𝑖/𝑠ℊ𝐺) = 𝒻𝐺⨂𝑢/𝑠′ℊ𝐺. For more on the symmetric difference 

complement (∐) operation, we refer to (Ay and Sezgin, 2025). 

Proposition 3.16:  
 
Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. If ℊ𝐺 ⊆𝐴 𝒻𝐺 , then 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑖/𝑑ℊ𝐺 . 

 
PROOF. Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s such that ℊ𝐺 ⊆𝐴 𝒻𝐺. Then, for each 𝑥, 𝑦 ∈
𝐺, ℊ𝐺(𝑥) ⊆ 𝒻𝐺(𝑦). Thus, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

= ⋂ (𝒻𝐺 (𝑦)\ℊ𝐺(𝓏))

𝑥=𝑦𝓏

= (𝒻𝐺⨂𝑖/𝑑ℊ𝐺)(𝑥) 

Thus, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑖/𝑑ℊ𝐺. 

Remark 3.17:  
 

Let 𝒻𝐺 and ℊ𝐺 be two 𝒮𝒮s. If If ℊ𝐺 ⊆𝑠 𝒻𝐺, then 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺 \̃ℊ𝐺. 

 
Proposition 3.18:  
 
Let 𝒻𝐺  and ℊ𝐺  be two 𝒮𝒮s. Then, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 ⊆̃ 𝒻𝐺⨂𝑢/𝑠ℊ𝐺. 

 
PROOF. Let 𝒻𝐺  and ℊ𝐺 be two 𝒮𝒮s. Then, for all 𝑥 ∈ 𝐺,  

 (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺(𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                ⊆  ⋃ (𝒻𝐺(𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                = (𝒻𝐺⨂𝑢/𝑠ℊ𝐺)(𝑥) 

Thus, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 ⊆̃ 𝒻𝐺⨂𝑢/𝑠ℊ𝐺. ◻   

Proposition 3.19:  
 
Let 𝒻𝐺  and ℊ𝐺  be two 𝒮𝒮s. If one of the following assertions is satisfied, 
then 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑢/𝑠ℊ𝐺: 

 

i. 𝒻𝐺 ⊆̃𝑆 ℊ𝐺  

ii. ℊ𝐺 ⊆̃𝑆 𝒻𝐺  

iii. 𝒻𝐺 =𝑆 (ℊ𝐺)𝑐 

PROOF. Let 𝒻𝐺  and ℊ𝐺 be two 𝒮𝒮s. 

i. Let 𝒻𝐺 ⊆̃𝑆 ℊ𝐺. Hence, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = 𝐴 and ℊ𝐺(𝑥) = 𝐵, where 𝐴 

and 𝐵 are two fixed sets and 𝐴 ⊆ 𝐵. Then, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                              = ⋃ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝑧

 

                              = (𝒻𝐺⨂𝑢/𝑠ℊ𝐺)(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑢/𝑠ℊ𝐺. 

ii. Let ℊ𝐺 ⊆̃𝑆 𝒻𝐺 . Hence, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝐴 and ℊ𝐺(𝑥) = 𝐵, where 𝐴 

and 𝐵 are two fixed sets and 𝐵 ⊆ 𝐴. Then, for all 𝑥 ∈ 𝐺, 

(𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                              = ⋃ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝑧

 

                              = (𝒻𝐺⨂𝑢/𝑠ℊ𝐺)(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑢/𝑠ℊ𝐺 . 
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iii. Let 𝒻𝐺 =𝑆 (ℊ𝐺)𝑐. Then, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝐴 and ℊ𝐺(𝑥) = 𝐵, where 𝐴 
and 𝐵 are two fixed sets and 𝐴 = 𝐵′. Hence, for all 𝑥 ∈ 𝐺, 
 

    (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺(𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                  = 𝑈 

                        = ⋃ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                  = (𝒻𝐺⨂𝑢/𝑠ℊ𝐺)(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑢/𝑠ℊ𝐺. ◻ 

Proposition 3.20:  
 
Let 𝒻𝐺  and ℊ𝐺  be two 𝒮𝒮s. Then, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 ⊆̃ 𝒻𝐺⨂𝑖/𝑢ℊ𝐺. 

 
PROOF. Let 𝒻𝐺  and ℊ𝐺 be two 𝒮𝒮s. Then, for all 𝑥 ∈ 𝐺,  

 (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺(𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                               ⊆  ⋂ (𝒻𝐺(𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                              = (𝒻𝐺⨂𝑖/𝑢ℊ𝐺)(𝑥) 

Thus, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 ⊆̃ 𝒻𝐺⨂𝑖/𝑢ℊ𝐺. ◻   

Proposition 3.21:  
 
Let 𝒻𝐺  and ℊ𝐺  be two 𝒮𝒮s. If one of the following assertions is satisfied, 
then 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑖/𝑢ℊ𝐺: 

 
i. 𝒻𝐺 = ∅𝐺  or ℊ𝐺 = ∅𝐺  

ii. 𝒻𝐺 =𝑆 (ℊ𝐺)𝑐 

PROOF. Let 𝒻𝐺  and ℊ𝐺 be two 𝒮𝒮s. 

i. Without loss of generality, let 𝒻𝐺 = ∅𝐺 . Then, for all 𝑥 ∈ 𝐺, 𝒻𝐺 (𝑥) = ∅. 
Thus, for all 𝑥 ∈ 𝐺, 

     (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺 (𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                   = ⋂ (𝒻𝐺 (𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝑧

 

                                   = (𝒻𝐺⨂𝑖/𝑢ℊ𝐺)(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑖/𝑢ℊ𝐺. 

ii.  Let 𝒻𝐺 =𝑆 (ℊ𝐺)𝑐. Then, for all 𝑥 ∈ 𝐺, 𝒻𝐺(𝑥) = 𝐴 and ℊ𝐺(𝑥) = 𝐵, where 𝐴 
and 𝐵 are two fixed sets and 𝐴 = 𝐵′. Hence, for all 𝑥 ∈ 𝐺, 

    (𝒻𝐺⨂𝑖/𝑠ℊ𝐺)(𝑥) = ⋂ (𝒻𝐺(𝑦)∆ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                  = 𝑈 

                        = ⋂ (𝒻𝐺 (𝑦) ∪ ℊ𝐺(𝓏))

𝑥=𝑦𝓏

 

                                  = (𝒻𝐺⨂𝑖/𝑢ℊ𝐺)(𝑥) 

Thereby, 𝒻𝐺⨂𝑖/𝑠ℊ𝐺 = 𝒻𝐺⨂𝑖/𝑢ℊ𝐺. ◻ 

4. CONCLUSION 

This study initiates with the formal definition of a novel product of soft 
sets, referred to as the soft intersection–symmetric difference product, 
constructed over a parameter domain equipped with a group-theoretic 
structure. Anchored in this foundational formulation, we conduct a 
rigorous algebraic investigation of the operation, with particular focus on 
its behavior under various taxonomies of soft subsethood and its 
compatibility with generalized soft equality relations. Furthermore, the 
proposed operation undergoes an in-depth comparative analysis with 
earlier soft product constructions within the hierarchical taxonomy of soft 
subset classifications, thereby yielding refined theoretical insights into 
their respective representational capacities and algebraic congruence. 
Concurrently, a meticulous structural investigation into the product’s 
behavior with respect to both the null and absolute soft sets further 

elucidates its foundational role within the broader algebraic 
framework.The systematic development and examination of such 
operations within an axiomatized algebraic framework constitute a 
cornerstone of abstract algebra, wherein structural validation through 
properties such as closure, associativity, commutativity, idempotenncy, 
and the existence (or nonexistence) of identity, inverse, and absorbing 
elements is essential for the formal classification of the induced algebraic 
system within the established algebraic hierarchy.The algebraic 
regularities and structural phenomena uncovered through this analysis 
not only consolidate the internal logical coherence of the framework but 
also affirm the product’s capacity to generalize classical algebraic 
constructs, thereby extending the expressive reach of soft algebraic 
systems. From a theoretical standpoint, the framework articulated herein 
addresses critical gaps in the existing body of literature and provides a 
robust foundation for the formal emergence of a new line of inquiry: soft 
group theory, grounded in the structural behavior of the proposed 
operation. Future explorations may aim to synthesize further algebraic 
operations within soft environments and refine generalized soft equality 
notions, ultimately broadening the theoretical landscape and enhancing 
the methodological applicability of soft set theory in algebraic modeling, 
computational structures, and decision-theoretic analysis under 
uncertainty. 
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