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We aimed to develop a conjugate gradient method by reformulating parameters so that iterative optimization

techniques perform more effectively. Instead of using a set of basic conjugate gradient formulas, the
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methodology introduces a new parameter that produces better convergence. The method is applied in Fortran
to test how many iterations and how many evaluations of the function are needed, as listed in table 1. The
behavior of convergence and the results used for comparison are created with Matplotlib on Python and

Ggplot2 on R programming for the chart. We like to compare our method to the proven LS (Liu-Storey) method
when checking how effective our proposed method is. We found that the technique provides better results
with lower iteration numbers and better convergence speeds for many test cases, proving it can challenge
conventional methods in optimizing problems without constraints.
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1. INTRODUCTION

In this project, we solve an unconstrained minimization problem stated
in the form,

Minyegn f(x), where f:R - R", (D

It is a continuously differentiable nonlinear function. And its gradient is
defined as

B VAR
V@ =[] = e 2)
The Conjugate Gradient (CG) method, iterative for solving (1), takes the
following form:

X1 = X;+ ady, fori 20, 3)
Where x;,, — x; = v; and d_i is Search direction states recursively as:

g = {—gi ifi—0

—Jis g, f1>0 )

Where B; It is the CG coefficient, and there are different formulas for
determining it. B; Each is related to a distinct conjugate gradient
approach. Some well-known strategies for determining Bi include:

i. The researchers proposed one of the first CG methods for
optimization (Hestenes et al, 1952). Where the parameter is
defined as

i i
B = S8, ()
ii. Fletcher and Reeves (FR) proposed a CG method (Fletcher et at.,

1964). This method is especially effective in nonlinear problems,
where the parameter is defined as:

Quick Response Code

T
9i+19i
BiFR — z+;‘ 1+1’ (6)
gi 91

iii. Polack-Ribiere-Polack (PRP) proposed an improved CG method,
the parameter is defined as (Polak et al.,, 1969; Polyak etal., 1969):

T .
BYRF = S, 7
9; 9i

iv. Liu and Storey(LS)(Liu et al., 1991).

T
BfS = 2 ®)
-d; gi

v. Dai and Yuan (DY): This method is proposed to enhances the
convergence properties by adjusting the search direction (Dai et

al.,, 1999).
BDY — 9610101 (9)
t aly; ’

vi. Conjugate Descent (CD) (Fletcher, R. 2000).

T g
i (10)
In addition to these standard algorithms, there are many other
approaches for computing the CG coefficient; for more information, see
(Shareef, 2022; Ibrahim et al., 2019; Khatab et al., 2024).

Researchers typically perform either exact or inexact line research. The
CG approach, such as the strong Wolf conditions, is used to find ai.

The strong Wolfe rules are a pair of inequalities that aim to balance
sufficient decrease of the objective function and guarantee that the search
direction maintains a descent direction. These requirements are essential
for establishing worldwide convergence of CG approaches.
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. Armijo Condition (Sufficient Decrease Condition)

[ + ax) — f(x) < 897 d;, (11)
e  Curvature Condition

|9l dil < Siag9] ds, (12)

Where 0< §k2<§K1<1 are constants according to Li and Weijun (Nocedal
etal, 1999).

Section 2 proves the descent condition, sufficient condition, and Global
Convergence. Using a new technique, we show that these three conditions
are satisfied. Section 3 presents numerical results highlighting
improvements in the number of iterations (NOI) and function evaluations
(NOF). Additionally, a comparative analysis with the usual method is
presented to demonstrate the improved performance.

2. DERIVATION OF BETA-PARAMETER USING A NEW VECTOR
To derive a new CG parameter, we first define a new vector as follows:

= (1—-€)gis1 — €giwhere0 <e <1 (13)
Next, multiply both sides of (13) by g7, ,, yielding
gleyi = 91111 = ©)giss — egil (14)
We multiply both sides of (4) by y;, to obtain
Al 1Yi = Graqryi + Bl d]y; (15)
using the modified conjugate gradient (d7,,y; = —tg’,,V;), we obtain
—tglnVi = —ginTy, + BTy, (16)

Substituting (14) in (16), we derive a new CG as follows:

pnewl — 91 [(1-8)gis1—2gi] —tgh Vi 17)
i - dTyi )
i

We can write a new search direction by

951 [(1-8)gis1—2gi] tgl v d.

dnEW
aly; v

i+1

= —gis1 T (18)
3. DESCENT AND SUFFICIENT DESCENT CONDITIONS FOR THE
NEW ALGORITHM

Theorem 1: In the convergence analysis of (CG) methods, we say that the
descent condition holds if, for each search direction d;,. The following
inequality is satisfied. g\, dI'® < 0.Inboth cases, exact line search (ELS)
and inexact line search (ILS). Then the search direction di+1 with
modified parameter B]**", of the conjugate gradient method.

Proof: Wheni = 0,d, = —I11gol120.

—90 50 9oTg, =
When i=i+1, we have

diy1 = Giyr + Binewly,

Multiply both sides of (18) by 9ti+1 on the lift, we obtain

3;’;1[(1—€)gi+1_£gi]_tgf+1vi
alyi

dTLEW j—

T T
i diY = —9fi1 i + Jiv1dis

If we choose al using exact line search (ELS), which requires g7,,d; = 0.
We have

9=1divr = —lgia|l?
Thus, g7, ,dis1 < 0.
However, when choosing the step size a; using inexact line search (ILS),

9iadi 0

T d.. . = _” . ”Z+ (1_8)3;r+19i+1+€a91+1 L_tagl+1 Td.
Gi+1%iv1 = ~lGi+1 Ty, Ty, 9i ai

Gradiss = —llgi > + (1 — &) iz "l“"'“ 2 (g7 dy) — a(t — &) U “"“
Since g7\, d; < dly;, so
~ellgisall2 = alt — &)dl,, (19)

Itis clearly g7, ,d;,; < 0, because ¢, a(t — €) and d y; are positive

gz+1dl+1

Thus, g7, ,diy1 < 0.m

Theorem 2: Suppose that the step size (q;) satisfies (11) and (12), and
the search direction d;,,said. To satisfy the sufficient descent condition,

if there exists a constant c>0 such that. g7, ,d;,; < —c||g;41|/? holds when

0<i.
Proof: From equation (19), we obtain

£||91+1”2 - a(t - E)dz yi =

T
2 _ di yi )
~llgisll? (e +a(t = ) 7525),

T
Gir1dir1 <

T
Gir1dir1 <

LJ’L

S andc>0

Assume, ¢ = € + a(t — )

Finally, we obtain girﬂdi+1 < —c|lgiz1ll*- m
3.1 The Global Convergence Analysis of the New Algorithm

It was shown in the global convergence analysis of the new nonlinear CG
algorithm that, whenever the gradient is Lipschitz continuous and the sets
have a bound, the algorithm will converge to a stationary point starting
from any position.

Assumption (Ei)

(E1): The level set 2 =x € m < f(x,) + €. The function f is bounded

below.

(E2): In a neighborhood n of Q, f is continuously differentiable and its
gradient is Lipschitz continuous, i.e., there exists a constant L > 0 such
that.

lgCeive) — gl < Llixipy — xillforallx €n (20)
We can write (20) by y; < Lv;, (21)

Preposition: Under the assumption (Ei) of f, there exists a constant y =
0 such that.

lginall < v, (22)
Lema 1. Ifzkﬂm = oo then Ilim infllg;ll =0
There exists a constant. 920 such that for all x, yE¢

T
(90 —9») (x—») =2 9llx —ylI? (23)
If f is a uniformly convex function, we can write Eq. (23) as:

yivi 2 9llvll* Or yl d; > adlld; 1%, (24)

Theorem 3: Suppose the assumption (Ei) holds and that is a uniformly
convex function. The new algorithm of the equation (18), which satisfies
the descent condition and is obtained by the strong Wolfe conditions (11)
and (12), satisfies the global convergence

Le. lim infllg:ll =0
Proof: We can write equation (17) as:

’

T T T

new| _ Jit19i+1 Jit19i tgi41Vi

1B | = |1 - ey Shglins — polptn y _tofan
i i Vi i Vi

T
new| - _ Ji+19i+1
1B < [(1 - &) Lot

+ |(at —&)H= g‘“d‘

[yl

From (21), (22), (23), and (24), we get

new < _ _ ay
1B < )Lumu2 @t -y
Let [|v;ll = [lx;41 — x;|l, D=max||x;+; — x;l|, forallxeR

We can write eq (18) by:

new _
eIl < gevall + [(1 = ) 5 + (at = &) 55l
Il < v+ (1-©) L+ (at =)L =
Now, by the above lemma, if ;51 ——— ||a"9W|| Zz>1 = oo, then

lim infllg;|| = 0.m

3.2 Algorithm of the new technique

. Data: Let x, as the starting value and xoeR", setdy, = —g,,i = 0.
. Phase 1.1If ||g;|| = 0, then stop; otherwise, proceed to Phase 2.

. Phase 2. Determine the length of the step a; By Wolfe conditions
(11), (12).

Cite The Article: Husein Saleem Ahmed, Salah Gazi Shareef (2025). An Enhanced Conjugate Gradient Method For Solving Unconstrained

Optimization Problems. Matrix Science Mathematic, 9(2): 56-60.




Matrix Science Mathematic (MSMK) 9(2) (2025) 56-60

Phase 3.Set x;,; = x; + v;.

Phase 4. Compute g;,,if||g;+1]| < 107° then stop. Else, go to Phase

5.

Phase 5. Determine B{***and d}}’ by using

yiT+1[(1—£)gi+1—sgi]—tgﬂlw

new _
4 =g+

d:
aly; v

T g
Phase 6. If [|g;4111? < % Go to Phase 2, else set. i =i + 1 And go

to Phase 3.

4. NUMERICAL RESULT

Both the New Method and the LS-CG method have been applied to a set of
over ten functions, where their problem dimensions vary from 5 to 5000.
Two metrics are used to see how the convergence is reached: the number
of iterations (NOI) and the number of function calls or evaluations (NOF).
Table 1 clearly shows that the New Method always takes less time and
uses fewer functions than LS-CG, no matter the complexity of the

problems.

To keep the results the same, we opted for specific settings.

t=1and £ =0.0155

Table 1: A comparative performance analysis between the new algorithm and the standard LS-CG

method.
Function Test Dimension New technique NOI-NOF LS method NOI-NOF
5 17-56 30-106
100 17-56 37-138
MIELE 1000 17-56 44-172
Xo= (21212;211)
3000 22-80 51-208
5000 22-80 51-208
5 6-39 6-39
100 13-73 14-103
SUM
1000 28-148 23-127
Xo=1
3000 32-163 32-167
5000 34-162 37-202
5 17-35 14-29
100 44-89 44-99
WOLF 1000 50-101 64-129
Xo=-1 3000 192-401 176-364
5000 113-243 110-327
5 30-83 30-85
100 30-83 30-85
1000 30-83 30-85
3000 30-83 30-85
ROSEN
5000 31-80 31-88
5 11-28 11-28
100 12-30 12-30
1000 12-30 12-30
3000 12-30 12-30
BEAL
5000 12-30 12-30
Xo=(0,0)
5 5-14 5-14
100 5-14 5-14
1000 5-14 5-14
EDGER 3000 6-16 6-16
Xo= (1;0)
5000 6-16 6-16
5 13-38 16-47
100 13-38 16-45
CUBIC 1000 13-38 16-45
Xo= (-1,2,1) 3000 13-38 16-47
5000 13-38 16-45
5 8-21 8-21
100 9-24 9-24
1000 9-24 9-24
3000 9-24 9-24
Shallow 5000 9-24 9-24
5 24-67 24-67
100 24-67 24-67

Cite The Article: Husein Saleem Ahmed, Salah Gazi Shareef (2025). An Enhanced Conjugate Gradient Method For Solving Unconstrained

Optimization Problems. Ma

trix Science Mathematic, 9(2): 56-60.




Matrix Science Mathematic (MSMK) 9(2) (2025) 56-60

Table 1 (Cont.): A comparative performance analysis between the new algorithm and the standard LS-CG
method.
1000 24-67 24-67
3000 24-67 24-67
Non-Diagonal 5000 24-67 24-67
5 9-26 9-26
100 9-26 9-26
1000 9-26 9-26
3000 9-26 9-26
Fred 5000 9-26 9-26
5 6-18 6-18
100 6-18 6-18
1000 6-18 6-18
Recip3 3000 6-18 6-18
5000 6-18 6-18
Total 1159-3270 1286-3950
discussed above.
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Figure 2: A comparative performance analysis between the new
algorithm and the standard LS-CG method across the number of
functions (NOF).

5. CONCLUSION

In the study, we introduced a new optimization technique and assessed
its performance in comparison with LS-CG (Liu-Storey Conjugate
Gradient). The algorithm that I proposed needs between 1159 and 3270
iterations and function evaluations, while the LS-CG method uses 1286 to
3950. These findings show that the novice computer programmer’s
method runs faster than the original method. The fact that both the
number of iterations and function evaluations are lowered suggests that
the improved CG technique improves speed and cuts running time. So, it
is generally used for big optimization tasks.

On the whole, the approach appears to be a sufficient replacement for LS-
CG because it reaches the same accuracy quickly and consumes less
computational power. Ongoing efforts could develop adaptable ways to
choose parameters and use this approach for dealing with the challenges
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