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We aimed to develop a conjugate gradient method by reformulating parameters so that iterative optimization 
techniques perform more effectively. Instead of using a set of basic conjugate gradient formulas, the 
methodology introduces a new parameter that produces better convergence. The method is applied in Fortran 
to test how many iterations and how many evaluations of the function are needed, as listed in table 1. The 
behavior of convergence and the results used for comparison are created with Matplotlib on Python and 
Ggplot2 on R programming for the chart. We like to compare our method to the proven LS (Liu-Storey) method 
when checking how effective our proposed method is. We found that the technique provides better results 
with lower iteration numbers and better convergence speeds for many test cases, proving it can challenge 
conventional methods in optimizing problems without constraints. 
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1. INTRODUCTION 

In this project, we solve an unconstrained minimization problem stated 
in the form, 

𝑚𝑖𝑛𝑥∈𝑅𝑛 𝑓(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝑓: 𝑅 →  𝑅𝑛,     (1) 

It is a continuously differentiable nonlinear function. And its gradient is 
defined as 

∇𝑓(𝑥) = [
𝜕𝑓

𝜕1
,

𝜕𝑓

𝜕𝑥2
, … ,

𝜕

𝜕𝑥𝑛
]

𝑇

=  𝑔𝑖 ,             (2) 

The Conjugate Gradient (CG) method, iterative for solving (1), takes the 
following form: 

𝑥𝑖+1 =  𝑥𝑖 + 𝑎𝑑𝑖 , 𝑓𝑜𝑟𝑖 ≥ 0,    (3) 

Where 𝑥𝑖+1 − 𝑥𝑖 = 𝑣𝑖  and d_i 𝑖𝑠 Search direction states recursively as: 

𝑑𝑖 =  {
−𝑔𝑖              𝑖𝑓 𝑖 −  0     
−𝑔𝑖+ 𝐵𝑖𝑑𝑖−1    𝑖𝑓 𝑖 >  0′   (4) 

Where 𝐵𝑖 It is the CG coefficient, and there are different formulas for 
determining it. 𝐵𝑖 Each is related to a distinct conjugate gradient 
approach. Some well-known strategies for determining 𝐵𝑖 include: 

i. The researchers proposed one of the first CG methods for 
optimization (Hestenes et al., 1952). Where the parameter is 
defined as 

𝐵𝑖
𝐻𝑆 =

𝑔𝑖+1
𝑇 𝑦𝑖

𝑑𝑖
𝑇𝑦𝑖

,    (5) 

ii. Fletcher and Reeves (FR) proposed a CG method (Fletcher et at., 
1964). This method is especially effective in nonlinear problems, 
where the parameter is defined as: 

𝐵𝑖
𝐹𝑅 =  

𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑔𝑖
𝑇𝑔𝐼

,               (6) 

iii. Polack-Ribiere-Polack (PRP) proposed an improved CG method, 
the parameter is defined as (Polak et al., 1969; Polyak et al., 1969): 

𝐵𝑖
𝑃𝑅𝑃 =  

𝑔𝑖+1
𝑇 𝑦𝑖

𝑔𝑖
𝑇𝑔𝑖

,    (7) 

iv. Liu and Storey(LS)(Liu et al., 1991). 

𝐵𝑖
𝐿𝑆 =  

𝑔𝑖+1
𝑇 𝑦𝑖

−𝑑𝑖
𝑇𝑔𝑖

,       (8) 

v. Dai and Yuan (DY): This method is proposed to enhances the 
convergence properties by adjusting the search direction (Dai et 
al., 1999). 

𝐵𝑖
𝐷𝑌 =  

𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑑𝑖
𝑇𝑦𝑖

,    (9) 

vi. Conjugate Descent (CD) (Fletcher, R. 2000). 

𝐵𝑖
𝐶𝐷 =  

𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑑𝑖
𝑇𝑔𝑖

,    (10) 

In addition to these standard algorithms, there are many other 

approaches for computing the CG coefficient; for more information, see 

(Shareef, 2022; Ibrahim et al., 2019; Khatab et al., 2024). 

Researchers typically perform either exact or inexact line research. The 

CG approach, such as the strong Wolf conditions, is used to find 𝛼𝑖. 

The strong Wolfe rules are a pair of inequalities that aim to balance 

sufficient decrease of the objective function and guarantee that the search 

direction maintains a descent direction. These requirements are essential 

for establishing worldwide convergence of CG approaches. 
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• Armijo Condition (Sufficient Decrease Condition)

𝑓(𝑥𝑖+1 + 𝑎𝑖𝑥𝑖) − 𝑓(𝑥𝑖) ≤  𝛿𝑘1𝛼𝑖𝑔𝑖
𝑇𝑑𝑖 ,          (11) 

• Curvature Condition 

|𝑔𝑖+1
𝑇 𝑑𝑖| ≤  𝛿𝑘2𝑔𝑖

𝑇𝑑𝑖 ,   (12) 

Where 0< 𝛿𝑘2<𝛿K1<1 are constants according to Li and Weijun (Nocedal 
et al., 1999). 

Section 2 proves the descent condition, sufficient condition, and Global 
Convergence. Using a new technique, we show that these three conditions 
are satisfied. Section 3 presents numerical results highlighting 
improvements in the number of iterations (NOI) and function evaluations 
(NOF). Additionally, a comparative analysis with the usual method is 
presented to demonstrate the improved performance. 

2. DERIVATION OF BETA-PARAMETER USING A NEW VECTOR

To derive a new CG parameter, we first define a new vector as follows: 

𝑦𝑖
∗ =  (1 − 𝜀)𝑔𝑖+1 −  𝜀𝑔𝑖 , 𝑤ℎ𝑒𝑟𝑒 0 < 𝜀 < 1   (13) 

Next, multiply both sides of (13) by 𝑔𝑖+1
𝑇 , yielding 

𝑔𝑖+1
𝑇 𝑦𝑖

∗ = 𝑔𝑖_1
𝑇 [(1 − 𝜀)𝑔𝑖+1 −  𝜀𝑔𝑖] (14) 

We multiply both sides of (4) by 𝑦𝑖 , to obtain 

𝑑𝑖+1
𝑇 𝑦𝑖 =  𝑔𝑖+1𝑇𝑦𝑖 + 𝐵𝑖

𝑛𝑒𝑤1𝑑𝑖
𝑇𝑦𝑖   (15) 

using the modified conjugate gradient (𝑑𝑖+1
𝑇 𝑦𝑖 =  −𝑡𝑔𝑖+1

𝑇 𝑉𝑖), we obtain 

−𝑡𝑔𝑖+1
𝑇 𝑉𝑖 =  −𝑔𝑖+1𝑇𝑦𝑖

+  𝐵𝑖
𝑛𝑒𝑤1𝑑𝑖𝑇𝑦𝑖,   (16) 

Substituting (14) in (16), we derive a new CG as follows: 

𝐵𝑖
𝑛𝑒𝑤1 =  

𝑔𝑖+1
𝑇 [(1−𝜀)𝑔𝑖+1−𝜀𝑔𝑖] −𝑡𝑔𝑖+1

𝑇 𝑉𝑖

𝑑𝑖
𝑇𝑦𝑖

,             (17) 

We can write a new search direction by 

𝑑𝑖+1
𝑛𝑒𝑤 =  −𝑔𝑖+1 + [

𝑔𝑖+1
𝑇 [(1−𝜀)𝑔𝑖+1−𝜀𝑔𝑖] −𝑡𝑔𝑖

𝑇𝑣𝑖

𝑑𝑖
𝑇𝑦𝑖

] 𝑑𝑖 ,    (18) 

3. DESCENT AND SUFFICIENT DESCENT CONDITIONS FOR THE

NEW ALGORITHM 

Theorem 1: In the convergence analysis of (CG) methods, we say that the 
descent condition holds if, for each search direction 𝑑𝑖+1. The following 
inequality is satisfied. 𝑔𝑖+1

𝑇 𝑑𝑖+1
𝑛𝑒𝑤 ≤ 0 . In both cases, exact line search (ELS) 

and inexact line search (ILS). Then the search direction di+1 with 
modified parameter 𝐵𝑖

𝑛𝑒𝑤, of the conjugate gradient method.

Proof: When 𝑖 = 0, 𝑑0 =  −𝑔0 𝑆𝑂 𝑔0𝑇𝑑0
=  −||𝑔0||2<0. 

When 𝑖=𝑖+1, we have 

𝑑𝑖+1 = 𝑔𝑖+1 + 𝐵𝑖𝑛𝑒𝑤1𝑑𝑖
,

Multiply both sides of (18) by 𝑔𝑡
𝑖+1

 𝑜𝑛 𝑡ℎ𝑒 𝑙𝑖𝑓𝑡, we obtain 

𝑔𝑖+1
𝑇 𝑑𝑖+1

𝑛𝑒𝑤 = −𝑔𝑖+1
𝑇 𝑔𝑖+1 + [

𝑔𝑖+1
𝑇 [(1−𝜀)𝑔𝑖+1−𝜀𝑔𝑖

]−𝑡𝑔𝑖+1
𝑡 𝑣𝑖

𝑑𝑖
𝑇𝑦𝑖

] 𝑔𝑖+1
𝑇 𝑑𝑖, 

If we choose αI using exact line search (ELS), which requires 𝑔𝑖+1
𝑇 𝑑𝑖 = 0. 

We have 

𝑔𝑖=1
𝑇 𝑑𝑖+1 = −‖𝑔𝑖+1‖2

Thus, 𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ 0.

However, when choosing the step size 𝑎𝑖  using inexact line search (ILS), 
𝑔𝑖+1

𝑇 𝑑𝑖 ≠ 0 

𝑔𝑖+1
𝑇 𝑑𝑖+1 = −‖𝑔𝑖+1‖2 + [(1 − 𝜀)

𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑑𝑖
𝑇𝑦𝑖

+ 𝜀𝛼
𝑔𝑖+1

𝑇 𝑑𝑖

𝑑𝑖
𝑇𝑦𝑖

− 𝑡𝛼
𝑔𝑖+1

𝑇 𝑑𝑖

𝑑𝑖
𝑇𝑦𝑖

] 𝑔𝑖
𝑇𝑑𝑖 , 

𝑔𝑖+1
𝑇 𝑑𝑖+1 = −‖𝑔𝑖+1‖2 + (1 − 𝜀)

𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑑𝑖
𝑇𝑦𝑖

(𝑔𝑖
𝑇𝑑𝑖) − 𝑎(𝑡 − 𝜀)

(𝑔𝑖+1
𝑇 𝑑𝑖)2

𝑑𝑖
𝑇𝑦𝑖

Since 𝑔𝑖+1
𝑇 𝑑𝑖 ≤ 𝑑𝑖

𝑇𝑦𝑖 , so 

𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −𝜀‖𝑔𝑖+1‖2 − 𝑎(𝑡 − 𝜀)𝑑𝑖

𝑇𝑦𝑖 ,   (19) 

It is clearly 𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ 0, because 𝜀, 𝑎(𝑡 − 𝜀) and 𝑑𝑖

𝑇𝑦𝑖  are positive 

Thus, 𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ 0. ∎ 

Theorem 2: Suppose that the step size (𝑎𝑖) satisfies (11) and (12), and 
the search direction 𝑑𝑖+1𝑠𝑎𝑖𝑑. To satisfy the sufficient descent condition, 

if there exists a constant c>0 such that. 𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −𝑐‖𝑔𝑖+1‖2 holds when 

0 ≤ 𝑖. 

Proof: From equation (19), we obtain 

𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −𝜀‖𝑔𝑖+1‖2 − 𝑎(𝑡 − 𝜀)𝑑𝑖

𝑇𝑦𝑖 ≤ 0,

𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −‖𝑔𝑖+1‖2 (𝜖 + 𝑎(𝑡 − 𝜀)

𝑑𝑖
𝑇𝑦𝑖

‖𝑔𝑖+1‖2
),  

Assume, 𝑐 = 𝜖 + 𝑎(𝑡 − 𝜀)
𝑑𝑖

𝑇𝑦𝑖

‖𝑔𝑖+2‖2
,  and c > 0 

Finally, we obtain 𝑔𝑖+1
𝑇 𝑑𝑖+1 ≤ −𝑐‖𝑔𝑖+1‖2. ∎ 

3.1 The Global Convergence Analysis of the New Algorithm 

It was shown in the global convergence analysis of the new nonlinear CG 
algorithm that, whenever the gradient is Lipschitz continuous and the sets 
have a bound, the algorithm will converge to a stationary point starting 
from any position. 

Assumption (Ei) 

(E1): The level set 𝛺 = 𝑥 ∈
𝑅1

𝑓(𝑥)
≤ 𝑓(𝑥0) +  𝜖. The function f is bounded 

below.  

(E2): In a neighborhood η of Ω, f is continuously differentiable and its 
gradient is Lipschitz continuous, i.e., there exists a constant L > 0 such 
that. 

‖𝑔(𝑥𝑖+1) − 𝑔(𝑥𝑖)‖ ≤ 𝐿‖𝑥𝑖+1 − 𝑥𝑖‖𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑛    (20) 

We can write (20) by 𝑦𝑖 ≤ 𝐿𝑣𝑖 ,          (21) 

Preposition: Under the assumption (Ei) 𝑜𝑓 𝑓, there exists a constant γ ≥ 
0 such that. 

‖𝑔𝑖+1‖ ≤ 𝛾,    (22) 

Lema 1. If ∑
1

‖𝑑𝑖‖2𝑘≥1 = ∞   then lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑖‖ = 0  

There exists a constant. 𝝑≥𝟎 such that for all x, y∈𝝋 

(𝑔(𝑥) − 𝑔(𝑦))
𝑇

(𝑥 − 𝑦) ≥ 𝜗‖𝑥 − 𝑦‖2   (23) 

If f is a uniformly convex function, we can write Eq. (23) as: 

𝑦𝑖
𝑇𝑣𝑖 ≥ 𝜗‖𝑣𝑖‖2 Or 𝑦𝑖

𝑇𝑑𝑖 ≥ αϑ‖𝑑𝑖‖2,   (24) 

Theorem 3: Suppose the assumption (Ei) holds and that is a uniformly 
convex function. The new algorithm of the equation (18), which satisfies 
the descent condition and is obtained by the strong Wolfe conditions (11) 
and (12), satisfies the global convergence 

i.e. lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑖‖ = 0 

Proof: We can write equation (17) as: 

|𝐵𝑖
𝑛𝑒𝑤| = |(1 − 𝜀)

𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑑𝑖
𝑇𝑦𝑖

− 𝜀
𝑔𝑖+1

𝑇 𝑔𝑖

𝑑𝑖
𝑇𝑦𝑖

+ −
𝑡𝑔𝑖+1

𝑇 𝑣𝑖

𝑑𝑖
𝑇𝑦𝑖

|,  

|𝐵𝑖
𝑛𝑒𝑤| ≤ |(1 − 𝜖)

𝑔𝑖+1
𝑇 𝑔𝑖+1

𝑑𝑖
𝑇𝑦𝑖

| + |(𝑎𝑡 − 𝜀)
𝑔𝑖+1

𝑇 𝑑𝑖

𝑑𝑖
𝑇𝑦𝑖

|,  

From (21), (22), (23), and (24), we get 

|𝐵𝑖
𝑛𝑒𝑤| ≤ (1 − 𝜖)

𝑎𝛾2

𝐿‖𝑣𝑖‖2
+ (𝑎𝑡 − 𝜀)

𝑎𝛾

𝐿‖𝑣𝑖‖

Let ‖𝑣𝑖‖ = ‖𝑥𝑖+1 − 𝑥𝑖‖, D=𝑚𝑎𝑥‖𝑥𝑖+1 − 𝑥𝑖‖, 𝑓𝑜𝑟𝑎𝑙𝑙𝑥𝜖𝑅 

𝑊𝑒 𝑐𝑎𝑛 𝑤𝑟𝑖𝑡𝑒 𝑒𝑞 (18) 𝑏𝑦: 

‖𝑑𝑖+1
𝑛𝑒𝑤‖ ≤ ‖𝑔𝑖+1‖ + [(1 − 𝜖)

𝑎𝛾2

𝐿‖𝑣𝑖‖2
+ (𝑎𝑡 − 𝜀)

𝑎𝛾

𝐿‖𝑣𝑖‖
] ‖𝑑𝑖‖  

‖𝑑𝑖+1
𝑛𝑒𝑤‖ ≤ 𝛾 + (1−∈)

𝑎𝛾2

𝐿𝐷
+ (𝑎𝑡 − 𝜀)

𝛾

𝐿
= 𝜑  

Now, by the above lemma, if ∑
1

‖𝑑𝑖+1
𝑛𝑒𝑤‖

2 =  ∑
1

𝜑2𝑖≥1𝑖≥1 = ∞, then 

lim
𝑘→∞

𝑖𝑛𝑓‖𝑔𝑖‖ = 0. ∎  

3.2 Algorithm of the new technique 

• Data: Let 𝑥0 as the starting value and 𝑥0𝜖𝑅𝑛
, set 𝑑0 = −𝑔0, 𝑖 = 0. 

• Phase 1. If ‖𝑔𝑖‖ = 0, then stop; otherwise, proceed to Phase 2.

• Phase 2. Determine the length of the step 𝑎𝑖  By Wolfe conditions 
(11), (12). 
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• Phase 3. Set 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖 . 

• Phase 4. Compute 𝑔𝑖+1, if‖𝑔𝑖+1‖ ≤ 10−6 then stop. Else, go to Phase 
5. 

• Phase 5. Determine 𝐵𝑖
𝑛𝑒𝑤𝑎𝑛𝑑 𝑑𝑖+1

𝑛𝑒𝑤 by using

• 𝑑𝑖+1
𝑛𝑒𝑤 = −𝑔𝑖+1 + [

𝑔𝑖+1
𝑇 [(1−𝜀)𝑔𝑖+1−𝜀𝑔𝑖

]−𝑡𝑔𝑖+1
𝑇 𝑣𝑖

𝑑𝑖
𝑇𝑦𝑖

] 𝑑𝑖 ,  

• Phase 6. If ‖𝑔𝑖+1‖2 ≤
|𝑔𝑖+1

𝑇 𝑔𝑖|

0.2
  Go to Phase 2, else set. 𝑖 = 𝑖 + 1 And go 

to Phase 3. 

4. NUMERICAL RESULT

Both the New Method and the LS-CG method have been applied to a set of 
over ten functions, where their problem dimensions vary from 5 to 5000. 
Two metrics are used to see how the convergence is reached: the number 
of iterations (NOI) and the number of function calls or evaluations (NOF). 
Table 1 clearly shows that the New Method always takes less time and 
uses fewer functions than LS-CG, no matter the complexity of the 
problems. 

To keep the results the same, we opted for specific settings. 

t=1 and ε = 0.0155 

Table 1: A comparative performance analysis between the new algorithm and the standard LS-CG 

method. 

Function Test Dimension New technique NOI-NOF LS method NOI-NOF 

MIELE 

x₀= (2,2,2,2,1) 

5 17-56 30-106 

100 17-56 37-138 

1000 17-56 44-172 

3000 22-80 51-208 

5000 22-80 51-208 

SUM 

x₀=1 

5 6-39 6-39 

100 13-73 14-103 

1000 28-148 23-127 

3000 32-163 32-167 

5000 34-162 37-202 

WOLF 

x₀= -1 

5 17-35 14-29 

100 44-89 44-99 

1000 50-101 64-129 

3000 192-401 176-364 

5000 113-243 110-327 

5 30-83 30-85 

ROSEN 

100 30-83 30-85 

1000 30-83 30-85 

3000 30-83 30-85 

5000 31-80 31-88 

5 11-28 11-28 

100 12-30 12-30 

BEAL  

x₀= (0,0) 

1000 12-30 12-30 

3000 12-30 12-30 

5000 12-30 12-30 

5 5-14 5-14 

100 5-14 5-14 

EDGER 

x₀= (1,0) 

1000 5-14 5-14 

3000 6-16 6-16 

5000 6-16 6-16 

CUBIC 

x₀= (-1,2,1) 

5 13-38 16-47 

100 13-38 16-45 

1000 13-38 16-45 

3000 13-38 16-47 

5000 13-38 16-45 

5 8-21 8-21 

100 9-24 9-24 

Shallow 

1000 9-24 9-24 

3000 9-24 9-24 

5000 9-24 9-24 

5 24-67 24-67 

100 24-67 24-67 
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Table 1 (Cont.): A comparative performance analysis between the new algorithm and the standard LS-CG 

method. 

Non-Diagonal 

1000 24-67 24-67 

3000 24-67 24-67 

5000 24-67 24-67 

5 9-26 9-26 

100 9-26 9-26 

Fred 

1000 9-26 9-26 

3000 9-26 9-26 

5000 9-26 9-26 

5 6-18 6-18 

100 6-18 6-18 

Recip3 

1000 6-18 6-18 

3000 6-18 6-18 

5000 6-18 6-18 

Total 1159-3270 1286-3950 

Figure 1: A comparative performance analysis between the new 
algorithm and the standard LS-CG method across the number of 

iterations (NOI). 

Figure 2: A comparative performance analysis between the new 
algorithm and the standard LS-CG method across the number of 

functions (NOF). 

5. CONCLUSION

In the study, we introduced a new optimization technique and assessed 
its performance in comparison with LS-CG (Liu-Storey Conjugate 
Gradient). The algorithm that I proposed needs between 1159 and 3270 
iterations and function evaluations, while the LS-CG method uses 1286 to 
3950. These findings show that the novice computer programmer’s 
method runs faster than the original method. The fact that both the 
number of iterations and function evaluations are lowered suggests that 
the improved CG technique improves speed and cuts running time. So, it 
is generally used for big optimization tasks. 

On the whole, the approach appears to be a sufficient replacement for LS-
CG because it reaches the same accuracy quickly and consumes less 
computational power. Ongoing efforts could develop adaptable ways to 
choose parameters and use this approach for dealing with the challenges 

discussed above. 

Figure 3: A comparative performance analysis between the new 
algorithm and the standard LS-CG method across the number of 

iterations (NOI) and functions (NOF). 
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