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ARTICLE DETAILS ABSTRACT

Article History: Soft set theory provides a mathematically robust and algebraically versatile framework for modeling systems

characterized by epistemic indeterminacy, vagueness, and parameter-dependent variability—features that
pervade foundational inquiries in decision theory, engineering, economics, and the information sciences. At
the heart of this formalism lies an extensive suite of algebraic operations and binary product constructs that
collectively confer a rich internal structure upon the universe of soft sets, capable of faithfully representing
intricate parametric interrelations. Within this conceptual setting, we introduce and rigorously investigate a
novel soft product, referred to as the soft union-theta product, defined over soft sets whose parameter spaces
are endowed with an intrinsic group-theoretic structure. The operation is meticulously axiomatized to ensure
compatibility with generalized soft subsethood and equality relations, thereby preserving the formal
algebraic integrity of the resulting system. A comprehensive algebraic analysis is undertaken to characterize
the operation’s fundamental properties—including closure, associativity, commutativity, idempotency, and
interactions with identity and absorbing elements—as well as its behavior in relation to the null and absolute
soft sets. In parallel, the proposed product is analytically juxtaposed with existing soft binary operations
within the stratified hierarchy of soft subset classifications, offering deeper insights into their relative
expressive capacities and mutual structural coherence. Our results affirm that the soft union-theta product
respects the algebraic constraints imposed by group-parameterized domains while generating a coherent
and structurally consistent algebraic system over the space of soft sets. Two core algebraic contributions
emerge from this study: (i) the integration of this product fortifies the internal operational harmony of soft
set theory by embedding it into an axiomatic framework that preserves and extends fundamental algebraic
behaviors; and (ii) the operation lays the groundwork for a generalized soft group theory, wherein soft sets
over group-based parameter domains replicate the axiomatic signatures of classical group structures under
suitably defined soft operations. By addressing the critical need for algebraic operations grounded in
semantically meaningful and structurally sound axioms, this work significantly advances the algebraic
unification and generalization of soft set theory. Beyond its theoretical depth, the proposed operation enables
the construction of abstract algebra-driven soft computational models, with direct implications for multi-
criteria decision-making, algebraic classification mechanisms, and uncertainty-sensitive data analysis over
group-structured semantic spaces. Consequently, the algebraic apparatus formulated herein not only extends
the theoretical boundaries of soft algebra but also solidifies its foundational relevance in both abstract
mathematical logic and applied analytical domains.
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1. INTRODUCTION

A wide spectrum of mathematically sophisticated frameworks has been
developed to model and analyze phenomena governed by uncertainty,
vagueness, and indeterminacy—conditions that routinely manifest in
domains such as engineering, economics, the social sciences, and medical
diagnostics. Notwithstanding their theoretical depth, classical paradigms
such as fuzzy set theory and probabilistic models continue to exhibit
intrinsic epistemological and algebraic constraints. For instance, fuzzy set
theory, as introduced, hinges on the subjectivity inherent in the
assignment of membership functions, whereas probabilistic approaches
presuppose the availability of repeatable events and known distributional
structures—assumptions that are frequently violated in epistemically
ambiguous or non-replicable real-world environments by (Zadeh, 1965).

In a landmark contribution, proposed soft set theory as a formally

Quick Response Code

minimalistic yet structurally adaptable framework that circumvents the
limitations of conventional models by encoding uncertainty through
parameter dependence rather than probabilistic likelihoods or fuzzy
memberships (Molodtsov, 1999). Since its inception, the algebraic
underpinnings of soft set theory have undergone substantial refinement.
Foundational operations such as union, intersection, and AND/OR
products were first introduced, while reinterpreted these constructions
within an information-theoretic paradigm, thereby facilitating their
applications to multivalued and relational systems (Maji et al., 2003; Pei
and Miao, 2005). It further enriched the theoretical apparatus by defining
restricted and extended variants of classical operations, which improved
the expressive granularity and operational scope of soft systems (Ali et al.,
2009). A sequence of subsequent investigations—including those—
systematically addressed conceptual ambiguities and introduced new
binary products and generalized equalities, significantly advancing the
algebraic landscape of soft set theory by (Yang, 2008; Feng et al., 2010;
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Jiang et al,, 2010; Ali et al,, 2011; Neog and Sut, 2011; Fu, 2011; Ge and
Yang, 2011; Singh and Onyeozili, 2012a-d; Zhu and Wen, 2013; Onyeozili
and Gwary, 2014; Sen, 2014). In recent years, the discipline has witnessed
a marked expansion of its algebraic framework through the introduction
of rigorously defined novel operations. Distinguished among these are the
works, whose contributions have collectively established a robust,
extensible, and internally coherent algebraic infrastructure for soft set
theory (Eren and Calisici, 2019; Stojanovié, 2021; Sezgin et al., 2023a,
2023b; Sezgin and Dagtoros, 2023; Sezgin and Demirci, 2023; Sezgin and
Calisicy, 2024; Sezgin and Yavuz, 2023a, 2023b; 2024; Sezgin and Cagman,
2024, 2025; Sezgin and Sarialioglu, 2024a, 2024b; Sezgin and Senyigit,
2025).

A pivotal area within this evolving body of work concerns the
formalization and generalization of soft equality and soft inclusion. The
original conception of soft subsets was generalized by (Maji et al., 2003;
Pei and Miao, 2005; Feng et al,, 2010). They advanced the theoretical
framework through the introduction of soft congruences, embedding
equivalence classes into the soft set universe (Qin and Hong, 2010). They
further extended the algebraic semantics by developing the notion of J-soft
equality, together with associated distributive principles (Jun and Yang,
2011). Subsequently proposed the concepts of L-soft subsets and L-
equality, uncovering foundational deviations from classical algebraic
norms—most notably, the failure of distributive identities in generalized
soft settings (Liu et al.,, 2012). Formalized a typology of soft subsets under
L-equality and established the validity of associativity, commutativity, and
distributivity within certain quotient structures, which were shown to
form commutative semigroups (Feng and Yongming, 2013). Broader
generalizations—including g-soft, gf-soft, and T-soft equalities—have also
been proposed, facilitating a lattice-theoretic and congruence-based
reinterpretation of soft algebraic systems (Abbas et al, 2014, 2017;
Alshami, 2019; Alshami and El-Shafei, 2020).

The definitional foundation of soft set theory was significantly
restructured, who eliminated internal inconsistencies and provided an
operationally coherent axiomatic basis, enabling a more rigorous
algebraic treatment (Cagman and Enginoglu, 2010). Concurrently, efforts
to develop binary soft products over algebraic structures have flourished.
The soft intersection-union product has been extended to rings,
semigroups, and groups, producing soft algebraic entities such as soft
union rings, semigroups, and groups (Sezer, 2012; Sezgin, 2016;
Mustuoglu et al,, 2016). Its dual, the soft union-intersection product, has
likewise been formulated within group-theoretic, semigroup-theoretic,
and ring-theoretic contexts, with their structural behaviors critically
determined by the presence or absence of identity and inverse elements
in the parameter domain (Kaygisiz, 2012; Sezer et al.,, 2015; Sezgin et al,,
2017).

Building upon this corpus, the present study introduces a new soft
product—the soft union-theta product—defined over soft sets whose
parameter sets are equipped with group-theoretic structure. This
operation is rigorously formalized and subjected to comprehensive
algebraic scrutiny. We examine its fundamental properties, including
closure, associativity, commutativity, idempotency, and distributivity, and
its interactions with identity and absorbing elements. The compatibility of
the proposed operation with generalized soft inclusion and equality is
established, ensuring its integration into the broader algebraic
architecture of soft set theory. Moreover, a comparative analysis is
conducted with preexisting soft products to evaluate its relative
expressive power and algebraic coherence within soft subset hierarchies.
The product's behavior with respect to null and absolute soft sets is also
formally characterized. Our theoretical findings confirm that the soft
union-theta product satisfies desirable axiomatic criteria and facilitates a
coherent algebraic mechanism for aggregating soft information across
group-structured parameter domains. In doing so, it extends classical
group-theoretic concepts into the soft set framework and lays the
conceptual groundwork for the development of a generalized soft group
theory defined via rigorously constructed binary operations. The
remainder of this manuscript is structured as follows: Section 2 presents
the foundational preliminaries, including definitions and basic algebraic
structures relevant to soft sets. Section 3 introduces the soft union-theta
product and systematically develops its algebraic theory. Section 4
synthesizes the primary theoretical results and outlines directions for
future inquiry, particularly in relation to the expansion of soft algebra and
its applications in abstract algebraic systems and uncertainty modeling.

2. PRELIMINARIES

This section undertakes a rigorous and systematic re-examination of the
foundational definitions and algebraic axioms that underpin the
theoretical architecture developed in the subsequent discourse. While soft
set theory was originally formulated as a parameter-dependent formalism

for modeling uncertainty, its structural and operational framework
underwent a significant axiomatic refinement in the seminal
reformulation by (Cagman and Enginoglu, 2010; Molodtsov, 1999). This
revision not only rectified formal inconsistencies in the original model but
also substantially enhanced the theory’s internal logical coherence and
broadened its applicability across a diverse spectrum of algebraic,
computational, and decision-theoretic contexts. The present investigation
adopts this refined formalism as its foundational axiomatic substrate.
Accordingly, all algebraic constructs, operational definitions, and
theoretical generalizations introduced in this study are rigorously
formulated within this enhanced framework, thereby ensuring maximal
internal consistency, structural soundness, and adherence to
contemporary standards governing the algebraic theory of soft systems.

Definition 2.1. (Cagman and Enginoglu, 2010) Let E be a parameter set,
U be a universal set, P(U) be the power set of U, and H < E. Then, the soft
set [, over U is a function such that #;.: E - P(U), where for all w € H,
F3c(w) = @. That is,

Fae = {(W, #H(w)):w € E}
From now on, the soft set over U is abbreviated by §S.

Definition 2.2. (Cagman and Enginoglu, 2010) Let #5; be an §S. If #5,(w) =
@ for all w € E, then #4 is called a null SS and indicated by @, and if
#3c(w) = U, for allw € E, then £y is called an absolute SS and indicated by
Up.

Definition 2.3. (Cagman and Enginoglu, 2010) Let #4; and gy be two SSs.
If 30 (W) € gx(w), forallw € E, then #4 is a soft subset of gy and indicated
by #3c € g If #30(W) = gx(w), for allw € E, then #4, is called soft equal to
gy, and denoted by £4; = gy

Definition 2.4. (Cagman and Enginoglu, 2010) Let f;; be an §S. Then, the
complement of f;, denoted by f;,, is defined by the softset f3.°: E - P(U)

such that f;,°(e) = U\fy (e) = (f,{(e))', foralle € E.

Definition 2.5. (Sezgin et al,, 2025b) Let £ and g be two §Ss. Then, # is
called a soft S-subset of g, denoted by £ S gy, if forallw € E, (W) =
M and gx(w) =D, where M and D are two fixed sets and M < D.
Moreover, two SSs #x and gy are said to be soft S-equal, denoted by

fx =s g if fc Es gy and gy s Fy.

It is obvious that if #x =5 gy, then #¢ and gy are the same constant
functions, thatis, forallw € E, #x(w)=gg(w) = M, where M is a fixed set.

Definition 2.6. (Sezgin etal., 2025b) Let £, and gy be two §Ss. Then, #y is
called a soft A-subset of gy, denoted by #x €, gy, if, for each a, 4 € E,

Fr(a) € gx(6).

Definition 2.7. (Sezgin et al., 2025b) Let #, and gy be two §Ss. Then, # is
called a soft S-complement of gy, denoted by #x =5 (gx)¢, if, for all weE,
#x(w) = M and gx(w) = D, where M and D are two fixed sets and M’ =
D'.Here, D' = U\D.

From now on, let G be a group, and S; (U) denotes the collection of all §§s
over U, whose parameter sets are G; that is, each element of S; (U) is an §§
parameterized by G.

Definition 2.8. (Mustuoglu et al., 2016) Let #; and g; be two SSs. Then,
the soft intersection-union product #;®; ., ¢ is defined by

(£e®1uga)® = [ | (fe DU 96@),  v.2€6

X=yz
forallx € G.

For additional information on SSs, we refer to (Aktas and Cagman, 2007;
Alcantud et al., 2024; Ali et al,, 2015; Ali et al,, 2022; Atagiin et al,, 2019;
Atagiin and Sezgin, 2015; Atagiin and Sezgin, 2017; Atagiin and Sezgin,
2018; Atagiin and Sezgin, 2022; Feng et al.,, 2008; Gulistan and Shahzad,
2014; Gulistan et al., 2018; Jana et al,, 2019; Karaaslan, 2019; Khan et al,,
2017; Mahmood et al.,, 2015; Mahmood et al., 2018; Manikantan et al,,
2023; Memis, 2022; Ozlii and Sezgin, 2020; Riaz et al.,, 2023; Sezer and
Atagiin, 2016; Sezer et al, 2017; Sezer et al, 2013; Sezer et al,, 2014;
Sezgin and ilgin, 2024; Sezgin et al,, 2022; Sezgin and Onur, 2024; Sezgin
et al,, 2024; Sezgin and Orbay, 2022; Sezgin et al,, 2019; Sun et al., 2008;
Tuncay and Sezgin, 2016; Ullah et al,, 2018; Sezgin et al., 2024a, 2024b. ).

3. SOFT UNION-THETA PRODUCT OF GROUPS

In this section, we formally introduce a novel binary operation on soft sets,
designated as the soft union-theta product, defined over parameter
domains equipped with group-theoretic structure. A rigorous algebraic
investigation is conducted to systematically delineate the foundational
structural properties of this operation, including its compatibility with
generalized soft equalities and its behavior under various soft inclusion
hierarchies. Special attention is devoted to analyzing the interplay
between the proposed product and established soft subset taxonomies,
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thereby situating it within the broader algebraic landscape of soft set
operations. To concretize the theoretical exposition, a carefully selected
suite of illustrative examples is provided, elucidating the operational
dynamics and subtle algebraic features of the construction. In addition, the
product’s interaction with preexisting soft binary operations is examined
within the context of soft subset classifications, offering refined insight
into its algebraic coherence and integrability. Collectively, these results
underscore the structural consistency of the soft union-theta product and
demonstrate its potential as a foundational component in the ongoing
algebraic enrichment of soft set theory.

Definition 3.1. Let #; and g, be two §Ss. Then, the soft union-theta
product §;®,:g¢ is defined by

($6®use )00 = | ] (s 92690@) = | ] (5 ) 0 (96 2)))

x=yz xX=yz

V,3€G
forallx € G.

Note here that since G is a group, there always exist ¥,z € G such that =
vz, for all x € G. Let the order of the group G be n, that is, |G| = n. Then, it
is obvious that there exist n different combinations of writing styles for
eachx € G suchthatx = yz, wherey, z € G. Besides, for more on the theta
(8) operation of sets, we refer to Sezgin et al. (2023c).

Note 3.2. The soft union-theta product is well-defined in S; (U). In fact, let
for 96 06 ¢ € Sg(U) suchthat (§;, ;) = (04, %) Then, #; = o and
g = #¢, implying that #;(x) = o5 (x) and g4 (x) = £4(x) for all x € G.
Thereby, forall x € G,

(Fe®ue8) 0 = | (560D 0 9°(2))

x=yz

_Jeer o ntc@)

X=yz
= (0’5®u/t&/6)(x)
Hence, $:®y/:9c = 06®u;t#c-

Example 3.3. Consider the group G = {Q, b} with the following operation:

Q b
Q fal b
b b Q

Let #; and g; be two 8§Ss over U=D, ={<x,y >:x2=y? =¢,xy =
yx} = {e, x,y, yx} as follows:

fe = (@ {e,x,¥}), (b, {e, yx})} and g¢ = {(Q, {x, yx}), (b, {e, y})}

Since 2=292="066, ($#:®./:9¢)(Q) = (#:°(2) N gcS(D) U ($:°(6) N
9¢°(0)) ={x} and since b=236=059 ($:®y:9:)0)=(F@n
g¢5(6)) U ($:°(6) N g¢°(Q)) = {y, yx} is obtained. Hence,

#G®u/tg’6 = {(Q, {x}), (b, {)’:}’x})}

Proposition 3.4. The set S;(U) is closed under the soft union-theta
product. That s, if £ and g are two S§s, then so is £, ®,,/:g¢-

PROOF. Itis obvious that the soft union-theta product is a binary operation
in S; (U). Thereby, S; (V) is closed under the soft union-theta product.

Proposition 3.5. The soft union-theta product is not associative in S; (U)

PROOF. Consider the group G and the §§s #; and g over U = {e, x,y, yx}
in Example 3.3. Let h; = {(9,{e,y}), (b,{x,yx})} be an §S over U. Since
$6®usegc = {(Q{x}), (6, {y, yx})}, then

(F6®use96)®usetc = {(Q.{e,yx}), (b,{e, x, y})}
Moreover, since g¢®,,:ic = {(2,0), (b, U)}, then
$6®ue(96®uschc) = (2, {yx}), (6, {x, yD}
Thereby, (#G®u/t96)®u/th6 * fa®u/t(96®u/tho)-

Proposition 3.6. The soft union-theta product is not commutative in
S;(U). However, if G is an abelian group, then the soft union-theta product
is commutative in S; (U).

PROOF. Let #; and g be two SSs and G be an abelian group. Then, for
allx € G,

(Fe®ure 96)) = | (8°0) n 96°(2)

x=yz
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xX=3zy
= (g'G®u/t fc )(X)

Example 3.7. Consider the §Ss #; and g over U = {e, x,y, yx} in Example
3.3.Then,

F6®utdc = {(@,{x}), (6,{y,yx})} and 9c®u e = {@, {xD, (6,{y, yx}}
implying that £,®,,/:9¢ = ¢¢®u:fc-
Proposition 3.8. The soft union-theta product is not idempotent in S; (U).
PROOF. Consider the #; SS in Example 3.3. Then,

$6®ufc = {(Q.{x,y,yx}), (6, 0)}
implying that #;®,,.#¢ # 5. O
Proposition 3.9. Let #; be a constant SS. Then, $,®,,.f; = #:°-

PROOF. Let #; be a constant §S such that, for all x € G, #; (x) = A4, where
A is a fixed set. Hence, for all x € G,

(Fe®urefe) @ = | | (8650 0 85°(2))

x=yz
=#:(x)
Thereby, £;®.,fc = $5°.0

Remark 3.10. Let S;"(U) be the collection of all constant §§s. Then, the
soft union-theta product is not idempotent in S;*(U) either.

Proposition 3.11. Let #; be an §§. Then, Us®,/: 6 = $c®u/:Us = D¢-
PROOF. Let #; be an §S. Then, for all x € G,
(Us®uebe)) = | (Us°0) 0 £°@)

x=yz

- Je@nsc@)

X=yz
= 0g(x)

Similarly,

(#G®u/tUG)(x) U (#GC(J’) n UGC(Z))

xX=yz

Jdcono

x=yz
=P (x)

Thereby, Us®.,/:fc = $6®u/tUs = B¢.0

Proposition 3.12. Let f; be a constant §§. Then, 8;®,,/. ¢ = $c 80 =

fe

PROOF. Let #; be a constant §§ such that, for all x € G, #; (x) = A, where

A is a fixed set. Hence, for all x € G,

(068uefe)00) = | (05°0) 0 (@)

x=yz

Jwnts@)

x=yz

= #Gc(x)

Similarly, for all x € G,

($s®u/e06)00) = | (#6500 0 085°@)

xX=yz

deomnw

xX=yz
=#:(x)
Thereby, @;®. /i = $c®u/tD¢ = #6°.0

Proposition 3.13. Let #; be a constant SS. Then, #;°®,.fc=
fG®u/t#Gc = @g.
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PROOF. Let #; be a constant §S such that, for all x € G, #; (x) = A, where
A is a fixed set. Hence, for all x € G,

| @0 n @)

xX=yz

SICAOLIA®)

x=yz

=0¢(x)

(fcc®u/t1fa)(x)

Similarly, forallx € G,

(Fo®uyefs)00) = | ] (56" 00 0 (h6)°(2))

xX=yz

= @) n o)

x=yz
=0s(x)
Thereby, fc;c@u/tfc = #G®u/t’ﬁGc = @¢.0

Proposition 3.14. Let #; and g, be two §Ss. If one of the following
assertions is satisfied, then #;®,,/:¢¢ = D¢:

i $5 =5 (g6)°

ii. fg = Ug orgg = Ug

iii. ($6)¢ €4 g6

iv. ($5)° Es g¢

PROOF. Let #; and g be two SSs.

i. Let #; =5 (¢¢)¢. Thus, for all x € G, #;(x) = A and g;(x) = B where A
and B are two fixed sets and A = B’. Then, forall x € G,

(f(;@u/:g’c)(x) = U (#:°O)n g*ac(z))

x=yz

= @ ngc)

xX=yz

- [J@em nas)

xX=yz
= ¢G(x)
Thereby, §Q./:96 = 9.0

ii. Without loss of generality, let #; = Ug;. Thus, for all x € G, #;(x) =
Ug(x) = U. Then, forall x € G,

(#6®u00)@ = | | (56°0) 0 9°(2))

xX=yz

Y [CAOLYRE)

xX=yz

= J@ngew@)

x=yz

= Q)(; (x)
Thereby, $;®,,:¢¢ = D¢-

iii. Let (f5)° €4 g¢- Then, (§5)°(¥) €4 g¢(), for each y, z € G. Thus, for
allx € G,

(Fo®ue86) ) = | (56 “0) 0 96°(2) = 050)
xX=yz

Thereby, #;®,,:¢¢ = B¢ Here note that, in classical set theory, if A’ € B,
then A’ N B’ = @, where 4 and B are fixed sets.

iv. The proof of similar to Proposition 3.14 (iii). O

Proposition 3.15. Let #; and g; be two §Ss. If §; = g; = @ , then
$6®usedc = Us-

PROOF. Let #; = g¢ = @g. Then, for all x € G, f5(x) = g¢(x) = Bs(x) =
@. Thus, for all x € G,

(Fo®ue8) ) = | (56 °0) 0 95°(2))

xX=yz
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xX=yz

=U(UnU)

x=yz
= Uz (%)

Thereby, $;®.,/:¢¢ = Ug.O

Proposition 3.16. Let #; and g be two §Ss.1f #; Es g, then £,®,,/:9¢ =

gc".

PROOF. Let #; and g; be two §Ss and #; S g.. Hence, for all x € G,
#6(x) = A and g;(x) = B, where A and B are two fixed sets and A € B.
Moreover, since g;°(x) € #; “(x), forallx € G,

($e®uyee) ) = | J (56 °0) 1 96°@) = 96°(0)
x=yz
Thereby, $®./t96 = 6. O
Proposition 3.17. Let #; and g; be two §Ss.1fg; & #;, then #; ®ujtdc =
f".
PROOF. Let #; and g; be two §Ss and g; S #;. Hence, for all x € G,

#¢(x) = A and g;(x) = B, where 4 and B are two fixed sets and B € A.
Moreover, since #; “(x) € g;°(x), forallx € G,

($s®uyeta) 0 = | (560D 0 95°@) = £6° @)

x=yz
Thereby, £;®,/:¢¢ = f¢". O

Proposition 3.18. Let f; and g, be two SSs. Then, ($;®./gc) =
$6®iude-

PROOF. Let #; and g be two §Ss. Then, forall x € G,

(£e®ueg0) @ = | | J (b6 “0) n96)

X=yz

= (ke v 9s°@)

xX=yz

= (ke v 26)

xX=yz

= $:®i/ugc (x)

Thereby, (#G®u/tgc)c = $:®ijudc-

Proposition 3.19. Let f;, g, and g be three SSs. If f5 € gg, then
@6®uihc € $6®u il and he®y g6 © Re®y )i

PROOF. Let #;, g¢, and fi; be three SSs such that #; € g;. Then, for all x €
G, $¢(x) € g¢(x). Moreover, since g;°(x) € #;°(x) forall x € G,

(9®ueha)® = | (06500 n 16 @)

x=yz

c |J@mnie@)

xX=yz
= (’lf(;@u/rha)(x)
is obtained, implying that g;®,,/.fi¢ € #; ®.tlig- Moreover, forall x € G,

(he®uesa)@ = | (16" ) 1 96°@)

x=yz

c Jreont@)

x=yz
= (hc®u/tfc)(x)
implying that i;®,,/:9¢ € he®y/cfe-

Proposition 3.20. Let #;, g¢, oG, and £ be four §Ss. If £, € ¢, and
$6 S go then 068,196 S £6Qy ) fc and ga®, 106 S FcQ®y e fec-

PROOF. Let f;, g¢, 0g and #£; be four $Ss such that £; € o, and
#c € g¢- Then, forallx € G, £4(x) S o (x) and £5(x) S g (x). Moreover,
since o €(x) € £4°(x) and g¢(x) € #:(x), forall x € G, then
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(€6®ue6)0) = | J (060 n 95°@)

xX=yz

< [Jtsmnse@)

xX=yz
= ('kG®u/t’ﬁ'G)(x)
is obtained, implying that 0;®,,:g¢ c 426®y)f6- Similarly, for all x € G,

(9:®uea)® = | (05500 n 06°(@)

x=yz

c [J@» nr@)

x=yz
= (#G®u/tk6)(x)
is obtained, implying that g ®,,,0¢ € #;Qy,c#¢. O

4. CONCLUSION

This study commences with the formal introduction of a novel soft product
on soft sets—termed the soft union-theta product—defined over
parameter domains equipped with group-theoretic structure. Anchored in
this foundational formulation, we undertake a comprehensive algebraic
investigation of the operation, focusing in particular on its structural
behavior across various taxonomies of soft subsethood and its coherence
with generalized soft equality relations. The proposed product is further
subjected to a comparative analysis with previously established soft
binary operations, systematically positioned within the hierarchical lattice
of soft subset classifications. This yields sharpened theoretical insights
into the relative representational expressiveness and algebraic
compatibility of competing soft operations. Concurrently, an in-depth
structural analysis is conducted to examine the interaction of the soft
union-theta product with both the null and absolute soft sets, as well as
with other soft binary products defined over group-structured parameter
domains, thereby further elucidating its foundational role within the
broader algebraic topology of soft systems. The systematic study of such
operations within an axiomatized algebraic framework aligns with core
pursuits in abstract algebra, where structural features—including closure,
associativity, commutativity, idempotency, and the presence or absence of
identity, inverse, and absorbing elements—serve as critical invariants for
classifying induced systems within the established algebraic hierarchy.
The algebraic regularities and structural phenomena uncovered through
this analysis not only affirm the internal consistency of the proposed
construction but also underscore its capacity to generalize classical
algebraic forms, thereby extending the expressive reach of soft algebraic
theory. From a foundational perspective, the formal apparatus developed
herein addresses salient gaps in the literature and establishes a rigorous
platform for the advancement of a generalized soft group theory—an
emerging paradigm in which soft sets over group-parameterized domains
simulate classical group-theoretic behavior through carefully defined soft
operations. Prospective research may build upon this framework by
synthesizing additional algebraic operations in soft contexts and refining
generalized notions of soft equality, thereby broadening both the
theoretical scope and the methodological applicability of soft set theory in
algebraic modeling, computational abstractions, and uncertainty-aware
decision frameworks.
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