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the 2DSBEBDF method is derived and found to be four. The Stability analysis of the method shows that the
method is zero-stable and its absolute stability region shows that the method is A-stable within the stiff
stability interval -1<p<1. The numerical experiments demonstrate the effectiveness of the 2DSBEBDF method

in solving stiff initial value and oscillatory problems over the existing stiff solver found in the literature.
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1. INTRODUCTION

Stiff initial value problems (IVPs) arise in various scientific and
engineering applications, particularly in chemical kinetics, control theory,
electrical circuits, and fluid dynamics (Yusuf et al,, 2024). These problems
exhibit rapid transients and require specialized numerical techniques to
ensure stability and efficiency (Suleiman et al.,, 2014). The term "stiffness"
in differential equations was first formally introduced, who observed that
standard explicit methods fail to handle problems with vastly different
timescales efficiently (Curtiss and Hirschfelder, 1952). Since then, the
numerical analysis of stiff systems has been extensively studied, leading
to the development of robust algorithms and stability criteria (Hairer and
Wanner, 1996; Shampine and Gear, 1979).

Stiff systems are characterized by the presence of eigenvalues of widely
varying magnitudes in the Jacobian matrix of the system, leading to rapid
variations in some components of the solution (Gear, 1971). Traditional
explicit solvers, such as Runge-Kutta methods, often require prohibitively
small step sizes to maintain stability, rendering them inefficient for stiff
problems. Instead, implicit schemes, such as backward differentiation
formulas (BDFs) and Rosenbrock methods, have been developed to
handle stiffness effectively (Cash, 1983; Butcher, 2008). In this paper, we
consider the numerical approximation of first order stiff IVPs of the form:

y=fxy), y@=y, a<x=<b 1)

One of the key challenges in solving stiff [VPs is choosing appropriate
numerical solvers that balance accuracy and efficiency. The A-stability and
L-stability properties of numerical methods are crucial in addressing
stiffness (Dahlquist, 1963). A-stable methods remain stable regardless of
step size, while L-stable methods further dampen unwanted oscillations,
making them particularly useful for stiff problems. The development of
adaptive step-size control in implicit solvers has significantly improved
their performance, with algorithms such as the variable step size BBDF,

Quick Response Code

and variable-order variable step size BDF Methods being widely used
(Suleiman et al., 2013; Ibrahim et al., 2008; Zawawi et al., 2021; Abasi et
al,, 2014).

Several real-world applications highlight the importance of efficient stiff
IVP solvers. In chemical kinetics, reactions often occur on vastly different
timescales, necessitating implicit solvers for accurate simulation (Verwer
et al, 1999). Similarly, in electrical circuit analysis, stiff differential
equations arise due to the presence of components with drastically
different time constants (Wanner and Chen, 2008). In climate modeling,
atmospheric and oceanic interactions lead to stiff systems that require
stable numerical integration techniques (Schiesser and Griffiths, 2009).

Despite significant advances in stiff IVP solvers, challenges remain in
optimizing computational efficiency, particularly for large-scale systems
in high-performance computing environments (Knoll and Keyes, 2004).
Recent developments in exponential integrators methods offer promising
directions for improving the efficiency of stiff problem solvers (Suleiman
etal, 2015; Ibrahim et al., 2007; Alhassan et al., 2024; Alhassan and Musa,
2023; Alhassan et al,, 2023; Ijam and Ibrahim, 2019). A famous result due
to Dahlquist (1963) has shown that no A-stable linear multistep method
(LMM) can have order greater than 2. However, the strategies for
improving stability, order of accuracy, and efficiency of explicit and
implicit multistep methods have been suggested, which include:

° Using higher derivatives of the solution

° Throwing in additional stages, off-step points, super future points,
and the likes, which leads to larger field of general linear methods
(Hairer and Wanner, 1996).

In an attempt to overcome the Dahlquist's second barrier, the
conventional non-block implicit backward differentiation formula (BDF)
was modified to develop a new class of generalized multistep methods
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called implicit extended backward differentiation formulas (EBDFs) for
stiff IVPs (Cash, 1980). This was achieved by incorporating a "super future
point” into the BDF method, as suggested by (Hairer and Wanner, 1996).
The EBDF method is a non-block implicit scheme that approximates only
one solution value per step and exhibits A-stable methods of order up to
four corresponding to the step number k ranging from 1 to 4 and also
A(a) —stable methods of order up to nine corresponding to the step
number k ranging from 5 to 8.

However, the performance of EBDF method is seen to be better than that
of CBDF. The EBDF method is of the form:

2}(:0 @ Ynsj = hBifnir + Brarfrrkr (2)

The implementation procedures for formula (2) involve predicting the
required solution using the conventional BDF and correcting the solution
using the EBDF method of higher order. The procedures outlined are as
follows:

i. Compute )7753 as the solution of conventional k-step BDF
Yn+k — hBrfnix = _Z}(:_é @ Ynyj (3)

ii. Compute 7™, as the solution of

Vnt+k+1 — hﬁkfn+k+1 = _&k—l}_]r(;i)k - Zﬁg @ Ynsje1 (4)
iii. ~Compute fp4q = f(xn+k+1'7$)k+1)

iv.  Compute y, ., from (2) written in the forrr_1
Ynak = MBifoir = — }:& A Ynyj + MWBisifnrrsr (5)

In this paper, we extend the idea presented in (2) to the existing 2-point
diagonally implicit super class of block backward differentiation formula
(2DSBBDF) method of the form (Babangida et al.,, 2016):

Z,l':g i Yntj-1 = hBiUnrk — Pfask-1) k= 1,2 (6)

We propose a new block implicit scheme, denoted as the 2-point
diagonally implicit super class of block extended backward differentiation
formula (2SDBEBDF), by introducing an additional future point to (6).
This yields a formula of the form:

Z}:g GYntj-1 = hBy(fark = Pfusk—1) + ABrirfatr+ (7)

The remainder of this paper is organized as follows. Section 2 provides
the derivation of the proposed method, while Section 3 presents the
determination of the method's order and error constant. A stability
analysis of the method is conducted in Section 4. Implementation details
are outlined in Section 5. Numerical results and test problems are
presented in section 6, followed by concluding remarks in section 7.

2. DERIVATION OF THE METHOD

This section presents the mathematical formulation of 2DSBEBDF
method by modifying and incorporating the super future point to the
existing third order diagonally implicit 2-point super class of block
backward differentiation formula (2DSBBDF) for the integration of Stiff
IVPs developed in this study, which has been derived using Taylor series
and express as (Babangida et al.,, 2016):

1+p 4 2 2
Yn41 = 73+FY1171 _73+pyn+73+pphfn_73+phfn+l (8)
2+p 3(2p+3) 3(p+6) 6 6

Ynt2 = — 2p711YH*1 + 2p—11 Yn — 20-11 Yn+1 — 2011 phfpsr + 2p-11 hfnsz

These formulae in (8) represent A-stable block implicit method of order
3 that approximates two solution values concurrently per integration
step. Therefore, the interpolation points involved for the newly proposed
method is as shown below.

h h i3 h
X1 X Xp+1 Xnto X3
= L
- Fnt1 >
Ynta

Figure 1: Interpolation Points Involved in the 2DSBEBDF method

Definition 1: The 2-point diagonally implicit super class of block
extended backward differentiation formula (2DSBEBDF) is defined by

I8 @ynejo1 = hBe(fave — Pfari—1) + hBisrfuiisr k= 1,2 )]

where k =1 represents the first point, and k = 2 corresponds to the
second points. The scheme (9) is derived using Taylor’s series expansion.

Derivation of the First Point: k = 1

To determine the coefficient of the first point, the linear difference
operator L; associated with the first point of (9) is defined by:

Ly[y(xen), hl: @oyn-1 + @1y + @2¥ns1 — hBifass + hoBifn — RB2friz = 0, (10)

By expanding the corresponding approximate relationship for (10) as a
Taylor series about any point x,, and collecting the like terms, we have the
following system of equations as:

oy (xn) + c1hy' () + €2h?y" () + +csh®y"" () + -+ (11
where,

Co=apt+a;+a,=0 \
G=—at+a,—p(1-p)—p,=0
C= Ja+;0—p-26=0 [ (12)

1 1 1
G = g% +g az _§ﬁ1 —28,=0
when obtaining the first point, the coefficient @, is normalized to one.
Solving this system of equations in (12) provides the values for a; and ;
as:

Table 1: Coefficient of the first point 2DSBEBDF
*o oy a3 B B2
8p+5 4(2p—7) 1 22 2(p+2)
16p — 23 16p — 23 16p — 23 16p —23

Substituting these values in equation (10), we obtain

_ 8p+5 4(2p-7) 22 22
Yn+1 = 16‘0_23}/11—1 + 16p-23 Yn 16p—23 hfn+1 + 16p-23 phfn +

2042 1f o (13)

16p—23

Derivation of the second point: k = 2

Similarly, to determine the coefficient of the second point, the linear
difference operator associated with the second point of (9) is defined as:

Lo [y (), hl: @oYnoy + 10 + @oVns1 + Q3Vniz — hBafraz + hoBafrer —
hB3fnis =0, (14)

Expanding the corresponding approximate relation for (14) as a Taylor
series about any point x,, and grouping the like terms gives:
coy(xn) + c1hy'(xn) + 2%y (o) + +csh®y" (ac) + -+ (15)
where,
c=ayta;ta,+az; =0
ca=—aytay+2a3—f(1-p)—P3=0
C2 =§“o +§a2 +2a3—B,(2—p) =3B =0

1 1 4 1 9 !

G=—caytoatoaz—p (2 _EP) —5B:=0
1 1

2 4 1 9
Cp =00+, +§a3_ﬁ2(§_gp)_;ﬁs =0

(16)

when obtaining the second point, the coefficient a5 is normalized to one.
Solving this system of equations in (16) provides the values for a; and f3;
as:

Table 2: Coefficient of the second point for 2DSBEBDF

2] a; a a3 B2 B3
14p + 17 9(12p+11) | 92p +3D) | | 150 6(p +3)
76p — 197 76p — 197 76p — 197 76p —197 | 76p — 197

Substituting these values in equation (14), we obtain

_ 14pt17 9(12p+11) 9(2p+31) 150 hfyey +
Ynt2 76p-197" "1 T 76p-197 Y 76p-197 “*1  76p-197 IT+2
150 6(p+3)
———phfp +——=h 17
750_197P fre1 76p—197 fnes 17)

Therefore, the expression for diagonally implicit 2-point super class of
block extended backward differentiation formula (2DSBEBDF) is given
as:

8p+5 4(2p-7) 22
= - h ]
Yn+1 Tep—237n"1 T Tep 23 Yn Tep—23 fra1
22 2(p+2)
——ph h
+ 16p—z3p fo + 16p—23 frsz 18
_ 14p+17 9(12p+11) 9(2p+31) (18)
Ynt2 = 76p-197° "1 T 76p-197 /M 76p—197 /N*1
150 150 6(p+3)
- h h h
76p—197 S+ +75p—197p fr+1 +76p—197 frs

To ensure stability, the parameter p is constrained within the range —1 <
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p < 1, allowing for any value within this interval to be utilized. For the
purpose of this paper and the numerical implementation of the method

(18), the value of p has been specifically chosen as % Setting p = % in (18)
leads to the following formulae as:

11

1
Yn+1 = .Vn 1 + .Vn + hfn+1 15 fn _ghfn+2

25 . (19)
Yn+2 = 53)/ -1 EYn +;Yn+1 +§hfn+2_§hfn+1_§hfn+3
To achieve optimal accuracy in the analysis of basic properties, the
subsequent sections will provide a generalized analysis of our method's
basic stability and convergence properties, including order, consistency,
zero-stability and A-stability of our proposed method.

This analysis will be presented in terms of the parameter p, allowing for a
comprehensive understanding of the method's behavior.

3. DERIVATION OF ORDER AND ERROR CONSTANT OF THE
METHOD
This section presents the order and error constant of the method for

different values of p corresponding to the formulae in (18). To derive the
order of the method, the formulae in (18) can be expressed as:

8p+5 4(2p 7)
16p-23 n-1"— 16p-23 ) +yn+1 1
2(p+2)
= Top— z3p hfn = 16p-23 Topz3 i1 16p-23 hfn+z 20
14p+17 _ 9(12p+11) 9(2p+31) n (20)
76p-197" "1 76p-197 T ' 76p-197 Ynt1 T Vntz
_ 150 6(p+3)
- 76,0—197phf”+1 76p-197 hfnsz + 76p-197 hfnss
The matrix representation associated with (20) is given by
A Ym+_} 1_h21 =0 _; m+} 1 (21)
Where Ay, A7, By, By and B; are square matrices defined by
8p+5 4(2p-7)
T lep-23  16p-23 1 0 0 22p
= * = [9(2p+31 = -
Ay 14p+17 9(12p+11) A 92p+31) 1 By 16p-23
—_— - 76p—197 0 0
76p-197 76p—197
22 2(p+2)
" lep-23 16p-23 0 0
F= 5 = | 6(p+3
By 150p 150 B, p+3) 0
- 76p-197
76p-197 76p—197

and Y,,_q, Yy, F_q, B and Fy, ;4 are column vectors defined by

_ Yn-1 _ Yn+1 _ fn—l _ fn+1 fn+3
V1= [ Yn ]’ Y = [}’n+z]’ Fn-1 = fa ]’ Fn = fn+2] Fins = fn+4]
Equation (21) can also be expressed as

8p+5 _ 4(2p-7)

16p—23 16p—23 [J’n—1]+[9(2p1+31) :|[§n+1 [ Top— 23] [fn 1]
n+2

14p+17 9azp+1D)| [ ¥,

76p-197
76p—197 76p—197
22 2(p+2)
e fn+1]+h 6(p+3) fn+3 22)
p _ 150 ||fns2 76p—197 fn+4
76p—-197 76p—197

Let Ay, A1, By, By and B; be block matrices defined by

Ay =(Ay Ay, A1 =(A; A3), B;=(B, By), Bi=(B, Bj)
and B; = (B, Bs)
Where,
_ _8p+s _ 4@p-7) 1
16p—23 16p—23 0 0
A, = A, = A, = |9@p+31)| A, = B, =
0 14p+17 [» 411 _91zp+1n) [ 72 [m]' 3 [1]’ 0 [0]'
76p-197 76p-197
22 2(p+2)
22p - — 0
B, = 16,,_23], B, = 1:5’)23 By = 16p15203 B, = [6(p+3) ] Bs = [0]
0 - 76p—197 0
76p-197 76p—197

Definition 2 (Order): The order of the method and its associated linear
difference operator given by

Lly(x); h] = Zh23[Ay (x + jB)] — R I By (x + j)], (23)

is defined as a unique integer p such that C;, 0(1)p, and c¢,4; # 0 where C,

is a constant column vector defined by

co=Ag+ A+ A+ + A ]

_ _ By + By
1= Ay + 24, + 345 + -+ kA, <+Bz+~~~+Bk+1)

L 2w
o _(A1 294, 3qA3) 1 ( 2971B, )J
7@\ 4+ k4, @-D\+3971B; + -+ (k + 1)T7 1By

For g = 0(1)5 we have

Co =YhoA=Ag+ A+ A+ 4,

[_ 8p+5 } [ _4(2p—7)

16p — 23 16p — 23 9(2 +31) 0] [0
14p+17 || 9(12p+11)|+ —pre e +[11=1o]
76p — 197 76p — 197 |

3 4

:ZjA]-— B; = (A, + 24, +3A;) — (B, + By + By + B,)

=0 =0

[ 42p-7 L 1

_|l 9(116;’ +2131)|+(2) 9(2p +31)| + (3) [°]|

l d J 76p — 197

76p — 197
[ 22 2(p+2
2 [_ I[ (p+2) 1|
B +| 16p—23|+ 16p — 23
16P 23 l 150p J | 150 |
76p—197) |"76p 1971

= —(Dy + 22D, + 32D3) — = (G, +2'G, + 3165 + 4'G,)

4(2p—7)
1l " 16p—23
=5l st in|t @722 *30 4 []]
Hf_2sep 22 76p — 197
76p — 197
’s 22 1
o ___Le
24P 16p — 23
[16p—23 +(@2) 1§0p +
1 0 76p — 197 B [o
1! 2(p+2) 0 “lo
16p — 23
@ Py [r@| et
_ _ 76p — 197
76p — 197 ]

3 .3 4 .2
D; G) 1
;= E (]3!’)— E U .1)=—3!(D1+23D2+33D3)

1 2 2 2
=561+ 26, + 3265 + 426,

4(2p—17) 1
1l "16p—23
I e e N B
o2t 1Y 76p — 197
76p — 197
’s 22
0 e
e 16p — 23
—23|+ (@)
[16;;0 23] @ 1s0p
1 76p — 197 _ [0]
2! [ 2(p+2) 0 ~lo
| T6p—=23 |
3)? 16"15023 +(@)?| 600 +3)
=0 76p — 197
"~ 76p —197 !

D) ~w (i*G) 1
C4=Z(]4ll)_z(1 j)z_(D1+24D2+34D3)
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1
_5(61 +23G, + 33G; + 43G,)

[ _4@p-7) L
1 16p — 23 0
= +(2)* [9(2p +3D)| + (3)4 |
2 |_w| 76p — 197 i
76p — 197
2 22 1
) __
_cep 16p — 23
3
1 |76p—197] | [1l7+1%
31 1 200+2) T| elep-23
| T6p—23 | 0 0
(3)3' p150 | + (4)3 6(p +3)
_ 76p — 197
[~ 76p - 197] ]
3 . 4
Jj*D; J°G;
CS=Z(4'1)_Z(3') = (D1 +2°D, +3°Dy)
j=0 j=0
1 4 4 4
— 51 G1+ 2°G, +3°G; + 4°G,)
[ _4@2p-7) ) ]
1 16p 0
== +(2)° [9(2p +3D[+(3)° |
5! | 9(12p+11)| 76p — 197 [ ]
76p — 197 |
. 2 22
) __ s
_cep 16p — 23
4
[16/30— 23]+(2) [ 150p L [ 171+52p
1 76p—197] | | “15T6p—23 | ]
2 [ 2(p+2) 1 0 Il 162p+111] 7 lo
| Te. o= 1076 =197
(3)4| 16p15§3 |+ @] 600 +3) 10 76 — 197
_ Y 76p — 197
| [T76p—197] ]

Therefore, the 2DSBEBDF method is of order four with error constant
given as

1 71+52p

1516p-23
1 62p+111
10 76-197

Cs =

Definition 3 (Consistency): a linear Multistep method (LMM) is said to
be consistent if it has order p > 1. It follows that a LMM is consistent if
and only if the following conditions are satisfied (Alhassan et al,, 2022):

i Sk o4 =0
ii. Xk, jA =20

Theorem 1: The derived 2-point diagonally implicit super class of block
extended backward differentiation formula (2DSBEBDF) method is
consistent.

Proof:

To show that the 2DSBEBDF scheme is consistent. It suffices to show that
the consistency conditions in definition 3 are satisfied. Let 4y, 4,, 4,, 45,
Ay, As, By, By, By, B3, B, Bs be as previously defined, then

Y304 =Ag+ A+ A+ A

8p+5 4(2p-7)
_ " lep-23 i " 1ep-23 + o 1+31) 0 0
= | 14p+17 _9(12p+11) 76p o7 0
76p-197 76p—197 a

Thus, the first consistency condition in (i) is satisfied.
Similarly,

Z?ZOjAj =A; +2A, + 34;

_4(2p-7) 3(8p—6)

_ 16p-23 _ | 16p-23
- 9(12p+11) +@) [9(2p+31)] + (3)[ ] ~ |12(13p-11)
- 76p—197 _—

76p-197 76p-197

% 0B =By +B,+B;+B,

22p __ 22 2(p+2) 0 3(8p-6)
—_— 16p-23 16p-23 16p-23
= — 6(p+3) | =
[16” 23] | 1500 | T 50 |1 [L] 12(13p-11)
0 - 76p—197 =
76p—197 76p—197 76p—197

Therefore, the second consistency condition in (ii) is satisfied, hence in
accordance with definition 3, the 2DSBEBDF method is consistent

4. STABILITY ANALYSIS OF THE METHOD

In this section, we investigate the stability of the method based on A-
stability and zero-stability, using the matrix representation of (12) as

16p-23 16p-23 J’n—1]+

b Bk [ 9‘2‘”31) yn+1]| s e
0

Yn+2 Vn+2 14p+17 - 9(12p+1D) || ¥y,
76p—197  76p—197
22 2(p+2)

0 fn-1 T lep-23  16p-23 |[fn+1
h 16p-23 [" ]+h [ ]+

[0 0 ] f LIV T | §

76p—197 76p—197.
0 0

h. 6(p+3) 0 [fn+3] (25)

76p—-197 n+4

which is equivalent to

1 0 8p+5 4(2p-7)
[ ] }’n+1]_ 16p-23 16p-23 [J’n 1

9(2p+31 =
22p+31) 14p+17  9(12p+11)

|+

+2
76p-197 " 76p—197  76p—197
22 2(p+2)
f 1 16p—23 16p—-23 f +1
h[ ] [ on| B2 o2 ([
0 76p—-197 76p-197
0 foss
h|se+n o f (26)
76p—197 n+4
We define the k-block, r-point method (18) in general matrix form as
AoYy = A1V 1 + h(BoFp_y + B1Ey + ByFnyy) (27)
where,
8p+5 4(2p-7)

1 0 16p-23 16p-23 0 2

= |9(2p+31 = = -

4o ﬁ ol 4 14p+17  9(12p+11) |’ By 0 16p0 3,
s 76p-197  76p—197

) 2(p+2) 0 0
_ 16p-23 16p-23 _ _ [Yn+1] _ [Vem+1
Bl - 150p 150 4 BZ - [M 0]! Ym - [yn+2] - [y2m+2]‘
— 76p—197

76p—197 76p—197
Y. = J’n—1] _ yZm—l] [3’2(m 1)+1 fn+1] f2m+1]
m-1 Yn Yom-2 Ya(m 1)+2 frsz fome2l

_ [ 1] [fzm 1] fatm- 1)+1]
Fin- fom-2 2(m-1)+2

_ fn+3] [f2m+3] f2(m+1)+1]
m+1 fn+4 f2m+4 2(m+1)+2

By substituting the linear test ordinary differential equation y' =
Ay into (27) and using hA = h, we obtain:

AgYy =AYy + h(BoYy_1 + By Y + ByYri1), (28)
where Ay,4,,By,B,andB,are as previously defined and

Yine1 =

yn+3] _ y2m+3] _ [)’2(m+1)+1]

Yn+a Yom+a Ya(m+1)+2

To obtain the characteristics polynomial, the determinant of the following
equation is computed in MATLAB 18 environment which is given by:

n(t, k) = det (4o — hBy — hB,)t — (A, + FB,)), (29)

Therefore, (29) is evaluated and is equivalent to

1 h2 242 h2 a2
(16p—23)(76p—197)(312h p*t? +3432h%p%t
+ 660h%pt? — 36hp?t? + 396h%pt — 3228h?t?
+ 824hp?t — 4702hpt? — 1216p%t? — 308hp?
— 6876pth + 6668ht? + 2192p%t + 4900pt?
— 374hp + 2356ht — 976p? — 3824pt — 4531t
—1076p + 4550t —19) = 0

o(t,h) =—

To demonstrate the zero-stability of our proposed 2DSBEBDF method, we
substitute A = 0 into the characteristics polynomial (30), yielding the first
characteristics polynomial as:
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—1216p2t2+2192p%t+4900pt2—976p%—3824pt—4531t2—1076p+4550t—19

ot,0) =~ (16p-23)(76p—197) =0 (31
Solving (31) for t, the following roots are obtained:
t=1t= 976p%+1076p+19 32)

1216p2-4900p+4531

Definition 4 (Zero-stability): A linear multistep method (LMM) is said to
be zero-stable if no root of the first characteristics polynomial, a(t) has
modulus greater than one, and if every root with modulus one is simple
(Musa and Alhassan, 2025).

By substituting two distinct values of the free parameter p into equation
(32), we obtain the roots of the first characteristic polynomial given in
equation (32) as:

i. When p = %
t=1,t=0.3358490566

" 3

ii. When p = -3
t=1,t=-0.02688413948

According to Definition 4, the 2DSBEBDF method is zero-stable, as the
absolute value of all roots of the first characteristic polynomial is less than
or equal to 1, and the root with a modulus of 1 is simple (i.e., unique).

Definition 5 (A-stability): A linear multistep method (LMM) is said to be
A-stable if the stability region covers the entire left-hand half-plane
(Alhassan et al., 2024).

A method with a region of absolute stability covering the entire negative
left-hand complex plane imposes no step-size constraints for stability
(Lambert, 1973). However, achieving A-stability severely limits the choice
of linear multistep methods (LMMs), due to Dahlquist's second barrier
which dictates that A-stable LMMs cannot exceed order 2 (Dahlquist,
1963). This limitation motivates the search for higher-order LMMs with
improved stability properties.

To determine the region of absolute stability (RAS) of the method (18)
using a locus boundary, the boundary of absolute stability region of the
method when p = —3/4 and p = 1/2 is determined by substitutingt = ¢
into equation (30). The graphs of the stability regions for the method
plotted in MAPLE environment is given below:

Unstable Region

Stable Region Stable Region

Stable Region Unstable Region Stable Region

Figure 2: Stability Region for 2DSBEBDF (p=-3/4)

Stable Region

Unstable Region
0.5

Stable Region

-1 1 2

Stable Region Unstable Region Stable Region
=05

Figure 3: Stability Region for 2DSBEBDF(p=1/2)

Thus, the regions of absolute stability (RAS) of the 2DSBEBDF method are
the areas outside the circular boundary. Notably, the RAS covers the entire
left-half of the complex plane, indicating that the 2DSBEBDF method is A-
stable. Having fulfilled this A-stability criterion, the method is well-suited
for numerically integrating stiff problems.

5. IMPLEMENTATION OF THE METHOD

The Newton’s iteration is applied for the implantation of the 2DSBEBDF
method. The description of the iteration is given below; we first start by
defining the error.

Definition 6 (Absolute Error): Let y; and y(x;) be the approximate and
theoretical solutions of the differential equation (1) respectively. Then
the absolute error is defined and given by

(error). = |0 — (yx), | (33)

The maximum error is defined by

MAXE = max (max(errori)t) (34)
1<isT 1<isN

where T is the total number of steps and N is the number of equations

Define
Fi =Yn4 +16p 23 hfasr — Tep—23 hpfy \
2(p+2
lz’EZ 2)3 hforz — T4
35)
9(2p+31) 150 (
FZ = Yn+2 + 76p—-197 n+1 76p—197 hfn+2 1
_ 15 _ 6(p+3) _
76p-197 hpfuia 76p-197 hfnss =72 }
Where
_ 8p+5 4(2p-7)
= 16p-237 "1 1 16p-23 In 36
_ _ l4p+17 9(12p+11) [ (36)
2= 76p-1977 "1 ' 76p-197 /T
are the back values. Let y,i‘:]l), j=1,2 denote the (i + 1)
iterative values of y, ., ; and define
+1 +1 .
el =y =y =12 37)
The Newton’s iteration for the 2DSBEBDF scheme takes the form:
+1 .
W =3 = (F09)) (B6)) =12 (38)
This equation (38) takes the form:
+1 .
(F,02)) el = = (R = 12 (39)
The matrix representation of (39) is equivalently written as
22h  9fp41 _ 2(p+2)h dfn+2
16p—23 dyn+1 16p—23 Yn+2 [yn+1]_
9(2p+31) _ 150ph dfns1 150h  dfnsz | |Vpyal™
76p—197  76p—197 dyn41 76p—197 dyn42
22 2(p+2)
9(2pl+31) 0 [J’n+1] 16p-23  16p-23 fn+1] +
- 76p—-197 Yn+2 _150p  _ _ 150 fn+z
76p—197 76p-197
0 22p
h[s(p+3) ] f"+3 [ 16p— 23] [f" 1]
76p—197 f"+4
_8p+5  4(2p-7)
16p-23 16p-23 | [Yn-1
e suzpun|[ 3 ] (40)
76p-197  76p—197

6. TEST PROBLEMS AND NUMERICAL RESULTS

This section utilizes C programming language to test the developed
method on stiff systems of ordinary differential equations (ODEs),
assessing its efficiency and reliability. These types of problems are
prevalent in engineering and physical sciences, particularly in areas such
as reaction kinetics, string vibrations, electrical circuits, and so on

Problem 1: This system of stiff oscillatory problem is considered in
(Lambert, 1991; Aminikhah and Hemmantnezhad, 2011):

y1(0) =2,0<x <10,
y2(0) = 3.
—1 and 1, = —1000 and its corresponding

y1 =2y, +y, + 2sinx,
y3 =998y, — 999y, + 999(cos x — sinx),

Whose eigenvalues are 4; =
exact solution is given by:

y; = 2e * +sinx,
y, = 2e710% + cosx
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Problem 2: This is the linear stiff IVP:

1 ,-200x 4 200 ,—x
=€ +—e

V1= 199 199
200 20067200)‘

Y27 7199°  T199

’

The eigenvalues of the differential equations are —1 and —200.
Source: Artificial Problem.

Problem 3: Consider the following first order linear stiff IVP of
the form:

i = —15y, — 14y,, (=1 0<x<10

y; =—14y; — 15 ¥2,¥2(0) =0,

The exact solution is given by:

1 ,-20x ;1 —«x
=-e +-e
e TR

—29x —-2x
=-e —=e
Y2 =3 2 ’

The eigenvalues of the differential equations are —1 and —29.
Source: Artificial Problem.

Problem 4: This is a physical stiff problem taken from (Musa et
al,, 2012):

Vi=——=y, y1(0) = 50,0 < x < 20
i i 3

=05V T Ve y2(0) =0

3
¥, = 50e 100%,
_3 3 .
y, = 50e 750 (—1 + e100 )

The eigenvalues of the differential equations are — %, and ——.

The numerical results for the stiff problems given are presented in Table
3-5. The problems are solved using our proposed 2DSBEBDF method
when p =1/2 and the 2-point diagonally implicit block backward
differentiation formula (2DBBDF) developed by (Zawawi et al., 2012). For
easy referencing the 2DBBDF is expressed as:

1 4 2
Y41 = _Eynfl +§yn +§h—fn+1
2 9 18 6 (41)
Yn+2 = Hyn—l _HYn + Hyn+1 + thn+2

This scheme is shown to be A-stable, consistent and convergent. The
following notations are used in the tables:

H: Step Size

MAXE: Maximum Absolute Error

TS: Total Number of Step

CPU TIME: Computation Time in seconds
MTD: Methods Used.

2DBBDF: 2-point Diagonally Implicit Block Backward Differentiation
Formula (Zawawi et al.,, 2012)

2DSBEBDF: 2-point Diagonally Implicit Super Class of Block Extended
Backward Differentiation Formula (our proposed method).

The exact solution is given by:

Table 3: Numerical Result for Problem 1

H MTD TS MAXE CPU TIME
10-2 2DBBDF 500 1.70236E+093 3.34300E-004
2DSBEBDF 500 7.70428E-002 4.31200E-005
10-3 2DBBDF 5000 2.08995E+101 3.42100E-003
2DSBEBDF 5000 3.58395E-006 4.67400E-004
10-4 2DBBDF 50000 1.50076E-004 3.75200E-002
2DSBEBDF 50000 3.59824E-008 4.14400E-003
10-5 2DBBDF 500000 1.50065E-005 4.30600E-001
2DSBEBDF 500000 3.59982E-010 4.61800E-002
10-6 2DBBDF 5000000 1.50066E-006 4.71100E+001
2DSBEBDF 5000000 3.59979E-012 5.25600E-001
Table 4: Numerical Result for Problem 2
H MTD TS MAXE CPU TIME
10-2 2DBBDF 100 1.42035E+007 3.63200E-003
2DSBEBDF 100 1.02086E+000 2.31000E-005
10-3 2DBBDF 1000 7.57316E-002 3.54800E-002
2DSBEBDF 1000 3.68866E-002 2.55600E-004
10-4 2DBBDF 10000 1.40727E-002 3.88200E-002
2DSBEBDF 10000 6.77281E-004 2.81500E-003
10-5 2DBBDF 100000 1.47164E-003 3.20600E-001
2DSBEBDF 100000 7.18833E-006 3.37200E-002
10-6 2DBBDF 1000000 1.47809E-004 4.51100E-001
2DSBEBDF 1000000 7.23122E-008 3.83900E-001
Table 5: Numerical Result for Problem 3
H MTD TS MAXE CPU TIME
10-2 2DBBDF 500 3.00703E-002 4.02800E-003
2DSBEBDF 500 2.81166E-002 2.42800E-004
10-3 2DBBDF 5000 9.95422E-003 4.29300E-003
2DSBEBDF 5000 6.88539E-004 2.78600E-004
10— 2DBBDF 50000 1.06267E-003 4.66900E-002
2DSBEBDF 50000 7.50580E-006 3.10800E-003
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Table 5(Cont.): Numerical Result for Problem 3

10-5 2DBBDF 500000 1.06943E-004 4.90600E-002
2DSBEBDF 500000 7.57075E-008 4.52600E-002
106 2DBBDF 5000000 1.07011E-005 5.74400E-001
2DSBEBDF 5000000 7.57727E-010 4.99400E-001
Table 6: Numerical Result for Problem 4
H MTD TS MAXE CPU TIME
10-2 2DBBDF 1000 1.35080E-002 2.82600E-003
2DSBEBDF 1000 2.42438E-002 3.14200E-004
10-3 2DBBDF 10000 1.35298E-003 2.38300E-002
2DSBEBDF 10000 2.42994E-007 3.66700E-003
10-+ 2DBBDF 100000 1.35320E-004 2.26100E-002
2DSBEBDF 100000 2.42994E-009 3.29100E-003
10-5 2DBBDF 1000000 1.35323E-005 2.12700E-001
2DSBEBDF 1000000 2.43048E-011 3.09600E-002
106 2DBBDF 10000000 1.35290E-006 2.37400E-001
2DSBEBDF 10000000 2.39784E-013 2.31800E-001

In order to visually demonstrate the efficancy of our method, graphs
depicting the relationship between log;,(MAXE) and H for the tested
problems are generated. Below are the graphs illustrating the scaled
maximum error for each individual problem.
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Figure 7: Graph of log(MAXE) against H for Problem 4

7. DiscusSION ON THE RESULT

The provided tables present the numerical results obtained for various
selected test problem using two different numerical methods, including 2-
point Diagonally Implicit Block Backward Differentiation Formula
(2DBBDF), and 2-point Diagonally Implicit Superclass Block Extended
Backward Differentiation Formula (2DSBEBDF). The results are analyzed
based on the step size (H), total number of steps (TS), maximum error
(MAXE), and CPU time.

For each test problem, as the step size decreases, the total number of steps
increases significantly, reflecting a finer discretization of the domain.
Correspondingly, the maximum error decreases, indicating higher
accuracy with smaller step sizes. Notably, the 2DSBEBDF method
generally exhibits lower maximum errors compared to the 2DBBDF
method across different step sizes, suggesting superior accuracy.

However, it's important to consider the computational efficiency of the
methods, as reflected in the CPU time. As expected, the CPU time increases
with decreasing step size, indicating higher computational costs for finer
discretization. Additionally, for each problem tested, the 2DSBEBDF
method tends to have lower CPU times compared to the 2DBBDF method.

Overall, the results demonstrate the trade-off between accuracy and
computational cost. While the 2DSBEBDF method generally offers
superior accuracy, it may require slightly less computational resources
compared to the 2DBBDF method. These findings provide valuable
insights for selecting an appropriate numerical method based on the
desired balance between accuracy and computational efficiency for
specific problem instances.

8. CONCLUSION

The diagonally implicit 2-point super class of block extended backward
differentiation formula (2SBEBDF), designed to efficiently handle stiff
ODEs is developed. The method extends the concept of introducing an
additional super future point to the existing 2-point super class of block
backward differentiation formula, resulting in higher-order A-stable and
more accurate block scheme. The derivation process, order
determination, and stability analysis of the 2SDBEBDF method is
presented. The paper establishes that the 2DSBEBDF method is of fourth
order with specific error constant. The stability analysis explores both
zero and A-stability, confirming that the method is zero-stable, and A-
stable, making it suitable for solving first-order stiff initial value problems.
Implementation details in Dev C++ compiler environment using Newton's
iteration is provided, and the methods are tested on various stiff ODEs. The
numerical simulation of results demonstrates the effectiveness and
efficiency of the 2DSBEBDF method, outperforming existing 2-point
diagonally implicit block backward differentiation formulae (2DBBDF)
algorithms in terms of accuracy and computational cost.
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