
Matrix Science Mathematic (MSMK)3(1) (2019) 13-16

Cite The Article: Hassan Khan, Muhammad Arif, Syed Tauseef Mohyud -Din (2019). Numerical Solution Of Fractional Boundary Value Problems By Using Chebyshev Wavelet 
Method. Matrix Science Mathematic, 3(1) : 13-16. 

  ARTICLE DETAILS 

 Article History: 

Received 22 December  2018   
Accepted 28 January 2019  

Available online 13 March 2019 

ABSTRACT

In this paper Chebyshev Wavelets Method (CWM) is applied to obtain the numerical solutions of fractional fourth, 
sixth and eighth order linear and nonlinear boundary value problems. The solutions of the fractional order problems 
are shown to be convergent to the integer order solution of that problem. The computational work is done successfully 
with the help of the proposed algorithm and hence this algorithm can be extended to other physical problems. High 
level of accuracy is obtained by the present method. 
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1. INTRODUCTION 

Fractional calculus has a number of applications in science and technology 
[1-3]. The study of fractional calculus initially started by Gemant and Scot-
Blair, they were the first, who proposed a fractional derivative model for 
Viscoelasticity and anomalous strain and stress [4,5]. Fractional calculus 
is applied to many other physical phenomena such as frequency 
dependent damping behavior of many viscoelastic materials, oscillation of 
earth quakes, fluid-dynamic traffic, control theory and signal processing 
[6-10]. 

The different numerical methods are developed for the numerical 
solutions of different problems in various branches of sciences and 
engineering. In this regard, a relatively new numerical technique based on 
Wavelets is being developed. The most common Wavelets schemes are 
Haar Wavelets (HW), Harmonic Wavelets of successive approximation, 
Legendre Wavelets and CWM [11-20]. In the present research work, the 
CWM is fully compatible with the complexity of the problems and has 
shown extremely accurate results, especially in case of fractional linear 
and nonlinear boundary problems of fourth, sixth and eighth order [21-
27]. Some other well -known methods for the solution of fractional 
differential equations are given in [28-33]. 

2. DEFINITIONS AND PRELIMINARIES CONCEPTS 

In this section, we give some important definitions and preliminaries 
concepts about fractional calculus theory, which is the foundation for this 
paper [28]. 

Definition 2.1  The Riemann-Liouville fractional integral operator 
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Definition 2.2 The Riemann-Liouville fractional derivative of order 

0 is defined as ( ) )()()()( tfItfD nn

dt
d  −= , ,1 nn − 

where n  is an integer. The derivative of this type has certain 

disadvantages dealing with the fractional differential equation. There after 
Caputo proposed a modified fractional differential operator. 

Definition 2.3 Caputo proposed fractional differential operator is given by 
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where 0t , n  is any integer. 

The Caputo operator has the following two properties: 
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3. CHEBYSHEV WAVELET METHOD (CWM)

Wavelets generally constitute a family of functions constructed from 

dilation and translation of single function ( )x  which is called the 

mother wavelet. For different continuous parameters a  and b  of dilation 

and translation respectively, we obtain the following family of continuous 
wavelet [15]. 
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Similarly, if we restrict the parameter to integer values, that is if 
kaa −=

0

, 
kanbb −=

00 , 1
0
a , 0

0
b , we have the following family of discrete

wavelets: 
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where nk ,
 form a wavelet basis for )(2 RL . 

For particular values of 2
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basis. The second CW ),,,()(
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parameters namely
12,...,3,2,1 −= kn , where k  is assumed any positive

integer, m  is the degree of the second Chebyshev polynomials, and the 

normalized time. This CW family is defined on the interval )1,0[  as below 
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where )()( 2 xTxT
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Here )(xT
m

 are the second Chebyshev polynomials of degree m  with 

respect to the weight function 
21)( xxw −=   on the interval  

1,1→, and satisfy the following recursive formula:
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4. CHEBYSHEV WAVELET METHOD (CWM)

In this section, we consider the following fractional boundary value 
problems 

)()()( yfxgxyD +=
, bx 0 , 54     (4.1) 

with the boundary conditions 
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The solution of Equation (4.1) can be expressed as a CW series of the form 
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  is given in Equation (3.1). We approximate )(xy  by the 

truncated series 
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To determine Mk 12 −
 coefficients, we will use Mk 12 −

 conditions. For 
this, five conditions are given by the following boundary conditions: 
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Now using these five boundary conditions, we need 52 1 −− Mk
 extra 

conditions to calculate the unknown’s coefficients mn
c

, . These conditions 

can be obtained by putting Equation (4.2) in Equation (4.1) as
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Assume that Equation (4.4) is exact at 52 1 −− Mk
points which we 

consider as 
i

x  then 
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For the choice of
i

x , the points are the zeros of the shifted Chebyshev 

polynomials of degree 52 1 −− Mk
 in the interval ]1,0[  that is 
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Equation (4.3) and Equation (4.5) gives Mk 12 −
 linear system or the 

nonlinear equations as the case may be occur for the problem. Same 
procedure can be extended to fractional differential equations of order 
sixth and eight. 

5. METHOD IMPLEMENTATION

Problem 1. Consider the following fractional nonlinear boundary value 
problem of fourth order 
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The analytical solution for this problem is 
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Table 1: Numerical results of Problem 1 

Table 1, shows the solutions given by Chebyshev method when 8=M  

and 1=k . The analysis of the absolute error between exact solution and 

approximate solution is done successfully. The numerical solutions 
obtained by CWM are compared with Optimal Homotopy Asymptotic 

Method (OHAM). In the table 
exact

y represent the exact solution for 

Problem 1. The approximate solutions are obtained by Chebyshev Wavelet 

Method for different order , that is for 25.3= , 50.3= , 

75.3=  and 4= . The Error 
4

y  and OHAM, shows the respective 

errors given by the CWM and Optimal Homotopy Asymptotic Method. 

Figure 1: The solution graph, by Chebyshev method for different 
fractional order   

Problem 2. Given fractional order BVP  
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Figure 2: The Chebyshev solutions graph for the fractional differential 
equations of different order .  

Table 2: The numerical results for Problem 2 for different fractional order 
  

In table 2, the Chebyshev Wavelet Methods (CWM) solutions for Problem 

2 are given for 12=M , 1=k . The Chebyshev Wavelet Methods 

solutions are given for different fractional orders 25.5= , 50.5= , 

75.5= and for 6= . The errors obtained by CWM are compared 

with error obtained by Optimal Homotopy Asymptotic Method (OHAM). It 
can be observed from the table that the present method has better 
accuracy than OHAM. 

Problem 3. The fractional order differential equation is given by 
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with the following boundary conditions 
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The analytical solution for this problem is  
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Table 3: The numerical results for Problem 3 for different fractional order 
.  

In Table 3, the numerical solutions obtained by CWM are given for  

13=M  and 1=k . The solutions 
25.7

y , 
50.7

y , 
75.7

y  and 
8

y  shows the 

solutions at fractional orders 25.7= , 50.7= , 75.7=  and 

8=  respectively. The solutions are calculated by the present method 

for different fractional orders particularly for 25.7= , 50.7= , 
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75.7= and 8= . The exact solution is represented by 
exact

y . The 

solutions The error associated with the present method and that of 
Optimal Homotopy Asymptotic Method (OHAM) method is compared. The 
table shows that the accuracy of the current method is higher than Optimal 
Homotopy Asymptotic Method (OHAM). 

Figure 3: The Chebyshev solutions graph for the fractional differential 
equations given in Problem 3 of different order  . 
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