ABSTRACT
DERIVATION OF FORMULA OF APPROXIMATE IDEALIZED HYPHAL CONTOUR AS BUILT-IN HYPHAL FITTING PROFILE
Journal: Matrix Science Mathematic (MSMK)
Author: M.Z.A.M. Jaffar and M.B.A. Ayop
This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
DOI: 10.26480/msmk.02.2021.39.41
Hypha consists of two regions; cap (apex) and cylindrical shaft (subapex and mature combined). The hyphal-cap is the most critical part due to its dominant role in the hyphal-wall growth and mor- phogenesis. Just how the hyphal-wall growth is regulated in order to maintain its tubular shape has been the subject of much research for over 100 years. Here, we derived a formula of approximate idealized hyphal-contour based on gradients of secant lines joining a fixed coor- dinate at the starting hyphal-shaft to any coordinates on the contour. The formula is capable of being a control for experimental analysis in which it is not limited to one specific shape of the hyphal-like cell. Also, it potentially can play a role as built-in or ready-made hyphal-fitting profile that “best fits” microscopic images of various actual hyphal- like cells. In other words, given a microscopic image of hyphal-like cell, mycologists and microbiologists would not have to wonder about mathematical representation of its contour since the formula has pre- pared for it.
Pages | 39-41 |
Year | 2021 |
Issue | 2 |
Volume | 5 |